OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8640–8653

Magnetic dipole super-resonances and their impact on mechanical forces at optical frequencies

Iñigo Liberal, Iñigo Ederra, Ramón Gonzalo, and Richard W. Ziolkowski  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 8640-8653 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2095 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Artificial magnetism enables various transformative optical phenomena, including negative refraction, Fano resonances, and unconventional nanoantennas, beamshapers, polarization transformers and perfect absorbers, and enriches the collection of electromagnetic field control mechanisms at optical frequencies. We demonstrate that it is possible to excite a magnetic dipole super-resonance at optical frequencies by coating a silicon nanoparticle with a shell impregnated with active material. The resulting response is several orders of magnitude stronger than that generated by bare silicon nanoparticles and is comparable to electric dipole super-resonances excited in spaser-based nanolasers. Furthermore, this configuration enables an exceptional control over the optical forces exerted on the nanoparticle. It expedites huge pushing or pulling actions, as well as a total suppression of the force in both far-field and near-field scenarios. These effects empower advanced paradigms in electromagnetic manipulation and microscopy.

© 2014 Optical Society of America

OCIS Codes
(290.0290) Scattering : Scattering
(290.4020) Scattering : Mie theory
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: January 30, 2014
Revised Manuscript: March 19, 2014
Manuscript Accepted: March 24, 2014
Published: April 3, 2014

Iñigo Liberal, Iñigo Ederra, Ramón Gonzalo, and Richard W. Ziolkowski, "Magnetic dipole super-resonances and their impact on mechanical forces at optical frequencies," Opt. Express 22, 8640-8653 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1960).
  2. R. Merlin, “Metamaterials and the Landau-Lifshitz permeability argument: large permittivity begets high-frequency magnetism,” Proc. Natl Acad. Sci. USA 106, 1693–1698 (2009). [CrossRef] [PubMed]
  3. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1, 41–48 (2007). [CrossRef]
  4. N. Liu, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. 20, 3859–3865 (2008). [CrossRef]
  5. H.-K. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, V. M. Shalaev, “A negative permeability material at red light,” Opt. Express 15, 1076–1083 (2007). [CrossRef] [PubMed]
  6. A. Alù, N. Engheta, “The quest for magnetic plasmons at optical frequencies,” Opt. Express 17, 5723–5730 (2009). [CrossRef] [PubMed]
  7. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef] [PubMed]
  8. J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef] [PubMed]
  9. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  10. M. Kerker, D. S. Wang, C. L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am. A 73, 765–767 (1983). [CrossRef]
  11. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nature Commun. 4, 1527 (2013). [CrossRef]
  12. S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013). [PubMed]
  13. S. D. Campbell, R. W. Ziolkowski, “Simultaneous excitation of electric and magnetic dipole modes in a resonant core-shell particle at infrared frequencies to achieve minimal backscattering,” J. Sel. Top. Quantum Electron. 19, 4700209 (2013). [CrossRef]
  14. F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nature Nanotech. 8, 95–99 (2013). [CrossRef]
  15. S. N. Sheikholeslami, A. García-Etxarri, J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett. 11, 3927–3934 (2011). [CrossRef] [PubMed]
  16. C. Pfeiffer, A. Grbic, “Metamaterial Huygens surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 7401–7405 (2013). [CrossRef]
  17. T. Niemi, A. O. Karilainen, S. A. Tretyakov, “Synthesis of polarization transformers,” IEEE Trans. Antennas Propag. 61, 3102–3111 (2013). [CrossRef]
  18. Y. Ra’di, V. S. Asadchy, S. A. Tretyakov, “Total absorption of electromagnetic waves in ultimately thin layers,” IEEE Trans. Antennas Propag. 61, 4606–4614 (2013). [CrossRef]
  19. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011). [CrossRef] [PubMed]
  20. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561 (1980). [CrossRef]
  21. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, B. Lukyanchuk, “Magnetic light,” Nature Sci. Reports 2, 492 (2012).
  22. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012). [CrossRef] [PubMed]
  23. J. A. Gordon, R. W. Ziolkowski, “The design and simulated performance of a coated nano-particle laser,” Opt. Express 15, 2622–2653 (2007). [CrossRef] [PubMed]
  24. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser”. Nature Photon. 460, 1110–1113 (2009).
  25. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, V. A. Fedotov, “Lasing spaser,” Nature Photon. 2, 351–354 (2008). [CrossRef]
  26. S. Arslanagić, R. W. Ziolkowski, “Active coated nano-particle excited by an arbitrarily located electric Hertzian dipoleresonance and transparency effects” J. Opt. 12, 024014 (2010). [CrossRef]
  27. P. C. Chaumet, A. Rahmani, “Electromagnetic force and torque on magnetic and negative-index scatterers,” Opt. Express 17, 2224–2234 (2009). [CrossRef] [PubMed]
  28. M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express 18, 428–443 (2010). [CrossRef]
  29. M. Nieto-Vesperinas, R. Gómez-Medina, J. J. Sáenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A 28, 54–60 (2011). [CrossRef]
  30. R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5, 3512 (2011). [CrossRef]
  31. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature (London) 466, 735–738 (2010). [CrossRef]
  32. N. Meinzer, M. Ruther, S. Linden, C. M. Soukoulis, G. Khitrova, J. Hendrickson, J. D. Olitsky, H. M. Gibbs, M. Wegener, “Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain,” Opt. Express 18, 24140–24151 (2010). [CrossRef] [PubMed]
  33. N. Meinzer, M. Konig, M. Ruther, S. Linden, G. Khitrova, H. M. Gibbs, K. Busch, M. Wegener, “Distance-dependence of the coupling between split-ring resonators and single-quantum-well gain,” Appl. Phys. Lett. 99, 111104 (2011). [CrossRef]
  34. M. Wegener, J. L. García-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16, 19785–19798 (2008). [CrossRef] [PubMed]
  35. Sigma-Aldrich Corporation, url: http://www.sigmaaldrich.com/materials-science/nanomaterials/lumidots.html (2013).
  36. S. D. Campbell, R. W. Ziolkowski, “The performance of active coated nanoparticles based on quantum-dot gain media,” Adv. OptoElectronics 36, 8786–8791 (2012).
  37. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).
  38. P. Holmström, L. Thylén, A. Bratkovsky, “Dielectric function of quantum dots in the strong confinement regime,” J. Appl. Phys. 107, 4307–4313 (2010). [CrossRef]
  39. I. Moreels, D. Kruschke, P. Glas, J. W. Tomm, “The dielectric function of PbS quantum dots in a glass matrix,” Opt. Mater. Express 2, 496–500 (2012). [CrossRef]
  40. T. Kudo, H. Ishihara, “Proposed nonlinear resonance laser technique for manipulating nanoparticles,” Phys. Rev. Lett. 109, 7402–7406 (2012). [CrossRef]
  41. A. Mizrahi, Y. Fainman, “Negative radiation pressure on gain medium structures,” Opt. Lett. 35, 3405–3407 (2010). [CrossRef] [PubMed]
  42. I. Liberal, I. Ederra, R. Gonzalo, R. W. Ziolkowski, “Near-field electromagnetic trapping through curl-spin forces,” Phys. Rev. A 87, 3807–3816 (2013). [CrossRef]
  43. S. Tricarico, F. Bilotti, L. Vegni, “Reduction of optical forces exerted on nanoparticles covered by scattering cancellation based plasmonic cloaks,” Phys. Rev. B 82, 5109–5117 (2010). [CrossRef]
  44. R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, 1961).
  45. I. Liberal, I. Ederra, R. Gonzalo, R. W. Ziolkowski, “Electromagnetic force density in electrically and magnetically polarizable media,” Phys. Rev. A 88, 053808 (2013). [CrossRef]
  46. A. Alù, N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and or double-positive metamaterial layers,” J. Appl. Phys. 97, 094310 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited