OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8654–8671

Enhanced 3D spatial resolution in quantitative phase microscopy using spatially incoherent illumination

Pierre Bon, Sherazade Aknoun, Serge Monneret, and Benoit Wattellier  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 8654-8671 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3685 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the use of spatially incoherent illumination to make quantitative phase imaging of a semi-transparent sample, even out of the paraxial approximation. The image volume electromagnetic field is collected by scanning the image planes with a quadriwave lateral shearing interferometer, while the sample is spatially incoherently illuminated. In comparison to coherent quantitative phase measurements, incoherent illumination enriches the 3D collected spatial frequencies leading to 3D resolution increase (up to a factor 2). The image contrast loss introduced by the incoherent illumination is simulated and used to compensate the measurements. This restores the quantitative value of phase and intensity. Experimental contrast loss compensation and 3D resolution increase is presented using polystyrene and TiO2 micro-beads. Our approach will be useful to make diffraction tomography reconstruction with a simplified setup.

© 2014 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(110.0180) Imaging systems : Microscopy
(110.1650) Imaging systems : Coherence imaging
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:

Original Manuscript: February 10, 2014
Revised Manuscript: March 25, 2014
Manuscript Accepted: March 25, 2014
Published: April 3, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Pierre Bon, Sherazade Aknoun, Serge Monneret, and Benoit Wattellier, "Enhanced 3D spatial resolution in quantitative phase microscopy using spatially incoherent illumination," Opt. Express 22, 8654-8671 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Cuche, P. Marquet, C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999). [CrossRef]
  2. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29, 2503–2505 (2004). [CrossRef] [PubMed]
  3. M. Debailleul, V. Georges, B. Simon, R. Morin, O. Haeberlé, “High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples,” Opt. Lett. 34, 79–81 (2009). [CrossRef]
  4. B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011). [CrossRef] [PubMed]
  5. Y. Choi, T. D. Yang, K. J. Lee, W. Choi, “Full-field and single-shot quantitative phase microscopy using dynamic speckle illumination,” Opt. Lett. 36, 2465–2467 (2011). [CrossRef] [PubMed]
  6. N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37, 2016–2018 (2012). [CrossRef] [PubMed]
  7. B. Bhaduri, K. Tangella, G. Popescu, “Fourier phase microscopy with white light,” Biomed. Opt. Express 4, 1434–1441 (2013). [CrossRef] [PubMed]
  8. A. Barty, K. A. Nugent, D. Paganin, A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998). [CrossRef]
  9. S. S. Kou, L. Waller, G. Barbastathis, C. J. R. Sheppard, “Transport-of-intensity approach to differential interference contrast (ti-dic) microscopy for quantitative phase imaging,” Opt. Lett. 35, 447–449 (2010). [CrossRef] [PubMed]
  10. K. G. Phillips, S. L. Jacques, O. J. T. McCarty, “Measurement of single cell refractive index, dry mass, volume, and density using a transillumination microscope,” Phys. Rev. Lett. 109, 118105 (2012). [CrossRef] [PubMed]
  11. S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14, 3792–3805 (2006). [CrossRef] [PubMed]
  12. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, G. Popescu, “Spatial light interference microscopy (slim),” Opt. Express 19, 1016–1026 (2011). [CrossRef] [PubMed]
  13. M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214, 7–12 (2004). [CrossRef] [PubMed]
  14. D. D. Duncan, D. G. Fischer, A. Dayton, S. A. Prahl, “Quantitative carré differential interference contrast microscopy to assess phase and amplitude,” J. Opt. Soc. Am. A 28, 1297–1306 (2011). [CrossRef]
  15. P. Bon, G. Maucort, B. Wattellier, S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17, 13080–13094 (2009). [CrossRef] [PubMed]
  16. I. Iglesias, “Pyramid phase microscopy,” Opt. Lett. 36, 3636–3638 (2011). [CrossRef] [PubMed]
  17. A. B. Parthasarathy, K. K. Chu, T. N. Ford, J. Mertz, “Quantitative phase imaging using a partitioned detection aperture,” Opt. Lett. 37, 4062–4064 (2012). [CrossRef] [PubMed]
  18. M. Born, E. Wolf, Principles of Optics (Cambridge University, 1999), chap. 9, pp. 547–553.
  19. N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A 2, 121–127 (1985). [CrossRef]
  20. J. Primot, N. Guérineau, “Extended hartmann test based on the pseudoguiding property of a Hartmann mask completed by a phase chessboard,” Appl. Opt. 39, 5715–5720 (2000). [CrossRef]
  21. P. Bon, S. Monneret, B. Wattellier, “Noniterative boundary-artifact-free wavefront reconstruction from its derivatives,” Appl. Opt. 51, 5698–5704 (2012). [CrossRef] [PubMed]
  22. P. Bon, B. Wattellier, S. Monneret, “Modeling quantitative phase image formation under tilted illuminations,” Opt. Lett. 37, 1718–1720 (2012). [CrossRef] [PubMed]
  23. P. Bon, T. Barroca, S. Lévêque-Fort, E. Fort, “Label-free evanescent microscopy for membrane nano-tomography in living cells,” J. Biophotonics (advance online publication, 2013). [CrossRef]
  24. V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165–176 (2002). [CrossRef] [PubMed]
  25. S. S. Kou, C. J. Sheppard, “Imaging in digital holographic microscopy,” Opt. Express 15, 13640–13648 (2007). [CrossRef] [PubMed]
  26. T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics, advance online publication (2014). [CrossRef]
  27. F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209–8217 (2006). [CrossRef] [PubMed]
  28. S. S. Kou, C. J. R. Sheppard, “Image formation in holographic tomography: high-aperture imaging conditions,” Appl. Opt. 48, H168–H175 (2009). [CrossRef] [PubMed]
  29. R. Fiolka, K. Wicker, R. Heintzmann, A. Stemmer, “Simplified approach to diffraction tomography in optical microscopy,” Opt. Express 17, 12407–12417 (2009). [CrossRef] [PubMed]
  30. W. J. Choi, D. I. Jeon, S.-G. Ahn, J.-H. Yoon, S. Kim, B. H. Lee, “Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution,” Opt. Express 18, 23285–23295 (2010). [CrossRef] [PubMed]
  31. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013). [CrossRef]
  32. P. Gao, G. Pedrini, W. Osten, “Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy,” Opt. Lett. 38, 1328–1330 (2013). [CrossRef] [PubMed]
  33. S. Chowdhury, J. Izatt, “Structured illumination quantitative phase microscopy for enhanced resolution amplitude and phase imaging,” Biomed. Opt. Express 4, 1795–1805 (2013). [CrossRef] [PubMed]
  34. X. Chen, N. George, G. Agranov, C. Liu, B. Gravelle, “Sensor modulation transfer function measurement using band-limited laser speckle,” Opt. Express 16, 20047–20059 (2008). [CrossRef] [PubMed]
  35. Y. Cotte, F. M. Toy, C. Arfire, S. S. Kou, D. Boss, I. Bergoënd, C. Depeursinge, “Realistic 3d coherent transfer function inverse filtering of complex fields,” Biomed. Opt. Express 2, 2216–2230 (2011). [CrossRef] [PubMed]
  36. A. Tikhonov, A. Goncharsky, V. Stepanov, A. Yagola, Numerical Methods for the Solution of Ill-Posed Problems, Mathematics and Its Applications (Springer, 1995). [CrossRef]
  37. N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series (The MIT Press, 1964).
  38. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009). [CrossRef] [PubMed]
  39. P. Bon, B. Rolly, N. Bonod, J. Wenger, B. Stout, S. Monneret, H. Rigneault, “Imaging the Gouy phase shift in photonic jets with a wavefront sensor,” Opt. Lett. 37, 3531–3533 (2012). [CrossRef] [PubMed]
  40. R. Barer, “Interference microscopy and mass determination,” Nature 169, 366–367 (1952). [CrossRef] [PubMed]
  41. S. Aknoun, P. Bon, J. Savatier, B. Wattellier, S. Monneret, “Quantitative birefringence imaging of biological samples using quadri-wave interferometry,” Proc. SPIE 8587, 85871D (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited