OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8712–8719

Nonlinear filter based decision feedback equalizer for optical communication systems

Xiaoqi Han and Chi-Hao Cheng  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 8712-8719 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1307 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nonlinear impairments in optical communication system have become a major concern of optical engineers. In this paper, we demonstrate that utilizing a nonlinear filter based Decision Feedback Equalizer (DFE) with error detection capability can deliver a better performance compared with the conventional linear filter based DFE. The proposed algorithms are tested in simulation using a coherent 100 Gb/sec 16-QAM optical communication system in a legacy optical network setting.

© 2014 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Optical Communications

Original Manuscript: February 25, 2014
Revised Manuscript: March 24, 2014
Manuscript Accepted: March 24, 2014
Published: April 3, 2014

Xiaoqi Han and Chi-Hao Cheng, "Nonlinear filter based decision feedback equalizer for optical communication systems," Opt. Express 22, 8712-8719 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Mikhailov, R. I. Killey, P. Bayvel, “Optical equalization of nonlinear signal distortion in 42.7-Gb/s RZ transmission,” IEEE Photon. Technol. Lett. 20(5), 381–383 (2008). [CrossRef]
  2. Y.-H. Hao, W.-W. Huang, W. Hu, P. Jiang, “Fiber nonlinearity mitigation in long-haul coherent optical OFDM,” in Proceedings of 2nd International Conference on Information Engineering and Computer Science (ICIECS) (Wuhan, China, 2010), pp. 25–26. [CrossRef]
  3. J. Leibrich, A. Ali, W. Rosenkranz, “Decision feedback compensation of transmitter / receiver nonlinearity for DD-OFDM,” in Proceedings of European Conference of Optical Communication (Geneva, Switzerland, 2011) pp.1–3. [CrossRef]
  4. C. Xia, W. Rosenkranz, “Nonlinear electrical equalization for different modulation formats with optical filtering,” J. Lightwave Technol. 25(4), 996–1001 (2007). [CrossRef]
  5. R. Weidenfeld, M. Nazarathy, R. Noe, I. Shpantzer, “Volterra nonlinear compensation of 112 Gb/s ultra-long-haul coherent optical OFDM based on frequency-shaped decision feedback,” in Proceedings of European Conference of Optical Communication (Vienna, Austria2009) pp. 1–2.
  6. F. P. Guiomar, J. D. Reis, A. L. Teixeira, A. N. Pinto, “Mitigation of intra-channel nonlinearities using a frequency-domain Volterra series equalizer,” Opt. Express 20(2), 1360–1369 (2012). [CrossRef] [PubMed]
  7. G. Shulkind, M. Nazarathy, “Nonlinear digital back propagation compensator for coherent optical OFDM based on factorizing the Volterra series transfer function,” Opt. Express 21(11), 13145–13161 (2013). [CrossRef] [PubMed]
  8. J. Pan, C.-H. Cheng, “Nonlinear electrical compensation for the coherent optical OFDM system,” J. Lightwave Technol. 29(2), 215–221 (2011). [CrossRef]
  9. P. M. Watts, V. Mikhailov, S. Savory, P. Bayvel, M. Glick, M. Lobel, B. Christensen, P. Kirkpatrick, S. Shang, R. I. Killey, “Performance of single-mode fiber links using electronic feed-forward and decision feedback equalizers,” IEEE Photon. Technol. Lett. 17(10), 2206–2208 (2005). [CrossRef]
  10. S. Otte, W. Rosenkranz, “A decision feedback equalizer for dispersion compensation in high speed optical transmission systems,” in Proceedings of International Conference on Transparent Optical Networks (Kielce, Poland, 1999), pp.19–22. [CrossRef]
  11. G. Katz, D. Sadot, “A nonlinear electrical equalizer with decision feedback for OOK optical communication systems,” IEEE Trans. Commun. 56(12), 2002–2006 (2008). [CrossRef]
  12. R. de Vries, A. P. Berkhoff, C. H. Slump, and O. E. Herrmann, “Digital compensation of nonlinear distortion in loudspeakers,” in Proceedings of 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineers, Minneapolis, MN, USA, 1993) pp. 165–168. [CrossRef]
  13. V. Y. Krachkovsky, Y. X. Lee, G. Mathew, B. Liu, M. Y. Lin, R. W. Wood, T. M. Chwee, “Error propagation evaluation for RLL-constrained DFE read channels,” IEEE Trans. Magn. 34(1), 147–152 (1998). [CrossRef]
  14. M. Reuter, J. C. Allen, J. R. Zeidler, R. C. North, “Mitigating error propagation effects in a decision feedback equalizer,” IEEE Trans. Commun. 49(11), 2028–2041 (2001). [CrossRef]
  15. X. Yu, W. Jin, M. Sui, Z. Lan, “Evaluation of forward error correction scheme for underwater wireless optical communication,” in Proceedings of third International Conference on Communications and Mobile Computing (Qingdao, China, 2011) pp. 527–530. [CrossRef]
  16. T. Mizuochi, Y. Miyata, T. Kobayashi, K. Ouchi, K. Kuno, K. Kubo, K. Shimizu, H. Tagami, H. Yoshida, H. Fujita, M. Akita, K. Motoshima, “Forward error correction based on block turbo code with 3-bit soft decision for 10-Gb/s optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 376–386 (2004). [CrossRef]
  17. V. J. Mathews, “Adaptive polynomial filters,” IEEE Signal Process. Mag. 8(3), 10–26 (1991). [CrossRef]
  18. A. Gutierrez and W. E. Ryan, “Performance of adaptive Volterra equalizers on nonlinear satellite channels,” in Proceedings of IEEE International Conference on Communications. (Institute of Electrical and Electronics Engineers, Seattle, WA, USA, 1995), pp. 488–492. [CrossRef]
  19. S. Haykin, Adaptive Filter Theory, (Prentice-Hall, 1996).
  20. A. Agarwal, S. N. Sur, A. K. Singh, H. Gurung, A. K. Gupta, R. Bera, “Performance analysis of linear and non-linear equalizer in Rician channel,” Procedia Technology 4, 687–691 (2012). [CrossRef]
  21. W. J. Pei, Z.-Y. He, L. X. Yang, A. Song, S. S. Hull, J. Y. Cheung, “A generalized Volterra series method for reconstructing deterministic dynamics from noisy chaotic time series,” in Proceedings of Asia-Pacific Conference on Circuits and Systems (Singapore, 2002) pp.491–494. [CrossRef]
  22. S. Zhang, M.-F. Huang, F. Yaman, E. Mateo, D. Qian, Y. Zhang, L. Xu, Y. Shao, I. B. Djordjevic, T. Wang, Y. Inada, T. Inoue, T. Ogata, and Y. Aoki, “40×117.6 Gb/s PDM-16QAM OFDM transmission over 10,181 km with soft-decision LDPC coding and nonlinearity compensation,” in the Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (Los Angeles, CA, USA, 2012) pp.1–3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited