OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8734–8741

Chromatic dispersion monitoring and adaptive compensation using pilot symbols in an 8 x 12.5 Gbit/s all-optical OFDM system

Satoshi Shimizu, Gabriella Cincotti, and Naoya Wada  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 8734-8741 (2014)
http://dx.doi.org/10.1364/OE.22.008734


View Full Text Article

Enhanced HTML    Acrobat PDF (1952 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and experimentally demonstrate a novel technique for chromatic dispersion (CD) monitoring and adaptive compensation in an 8 x 12.5 Gbit/s all-optical orthogonal frequency-division multiplexing (AO-OFDM) system by using two pilot symbols and a virtually imaged phased array (VIPA) for a tunable CD compensator. The two pilot symbols are added to the first and the last sub-channels of the OFDM signal, and their relative time delay is detected and used for CD estimation at the CD monitoring circuit. The monitored CD value is fed to VIPA for CD compensation. In the experiments, the relative time delay between the two pilot symbols was successfully observed, and the adaptive CD compensation drastically improved the bit-error-rate (BER) from over 10−5 to under 10−9. The estimated CD values showed less than 10 ps/nm difference from the values measured by a photonic dispersion analyzer, which is accurate enough since the AO-OFDM system can keep BER<10−9 upto 20 ps/nm residual CD.

© 2014 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(080.1238) Geometric optics : Array waveguide devices

ToC Category:
Optical Communications

History
Original Manuscript: January 16, 2014
Revised Manuscript: March 14, 2014
Manuscript Accepted: March 16, 2014
Published: April 4, 2014

Citation
Satoshi Shimizu, Gabriella Cincotti, and Naoya Wada, "Chromatic dispersion monitoring and adaptive compensation using pilot symbols in an 8 x 12.5 Gbit/s all-optical OFDM system," Opt. Express 22, 8734-8741 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-8734


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Shieh, H. Bao, Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008). [CrossRef] [PubMed]
  2. N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol. 30(4), 384–398 (2012). [CrossRef]
  3. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011). [CrossRef]
  4. A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, Y. Takatori, “No-guard-interval coherent optical OFDM for 100-Gb/s long-haul WDM transmission,” J. Lightwave Technol. 27(16), 3705–3713 (2009). [CrossRef]
  5. H. Takahashi, A. A. Amin, S. L. Jansen, I. Morita, H. Tanaka, “Highly spectrally efficient DWDM transmission at 7.0 b/s/Hz using 8 x 65.1-Gb/s coherent PDM-OFDM,” J. Lightwave Technol. 28(4), 406–414 (2010). [CrossRef]
  6. F. C. G. Gunning, S. K. Ibrahim, P. Frascell1, P. Gunning, and A. D. Ellis, “High symbol rate OFDM transmission technologies,” Optical Fiber Communication Conference 2010 (OFC2010), OThD1 (2010).
  7. I. Kang, M. Rasras, X. Liu, S. Chandrasekhar, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, J. Jaques, “All-optical OFDM transmission of 7 x 5-Gb/s data over 84-km standard single-mode fiber without dispersion compensation and time gating using a photonic-integrated optical DFT device,” Opt. Express 19(10), 9111–9117 (2011). [CrossRef] [PubMed]
  8. K. Takiguchi, T. Kitoh, A. Mori, M. Oguma, H. Takahashi, “Optical orthogonal frequency division multiplexing demultiplexer using slab star coupler-based optical discrete Fourier transform circuit,” Opt. Lett. 36(7), 1140–1142 (2011). [CrossRef] [PubMed]
  9. L. B. Du, J. Schröder, J. Carpenter, B. J. Eggleton, and A. J. Lowery, “Flexible all-optical OFDM using WSSs,” Optical Fiber Communication Conference 2013 (OFC2013), PDP5B.9 (2013). [CrossRef]
  10. S. Shimizu, G. Cincotti, N. Wada, “Demonstration and performance investigation of all-optical OFDM systems based on arrayed waveguide gratings,” Opt. Express 20(26), B525–B534 (2012). [CrossRef] [PubMed]
  11. S. Shimizu, G. Cincotti, and N. Wada, “Demonstration of Optical Packet Switching System based on 8 x 12.5 Gb/s All-Optical OFDM and SOA Switch,” OptoElectronics and Communication Conference 2013 (OECC2013), TuT3–4 (2013).
  12. S. Yamamoto, K. Yonenaga, A. Sahara, F. Inuzuka, A. Takada, “Achievement of subchannel frequency spacing less than symbol rate and improvement of dispersion tolerance in optical OFDM transmission,” J. Lightwave Technol. 28(1), 157–163 (2010). [CrossRef]
  13. A. J. Lowery, “Inserting a cyclic prefix using arrayed-waveguide grating routers in all-optical OFDM transmitters,” Opt. Express 20(9), 9742–9754 (2012). [CrossRef] [PubMed]
  14. M. Shirasaki, “Chromatic-dispersion compensator using virtually imaged phased array,” Photon. Technol. Lett. 9(12), 1598–1600 (1997). [CrossRef]
  15. S. Shimizu, G. Cincotti, and N. Wada, “Chromatic dispersion monitoring and adaptive compensation in an 8 x 12.5 Gb/s all-optical OFDM system,” European Conference on Optical Communication 2013 (ECOC2013), P. 3. 2 (2013).
  16. S. Namiki, “Wide-Band and -range tunable dispersion compensation through parametric wavelength conversion and dispersive optical fibers,” J. Lightwave Technol. 26(1), 28–35 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited