OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8742–8748

Demonstration of DFT-spread 256QAM-OFDM signal transmission with cost-effective directly modulated laser

Fan Li, Jianjun Yu, Yuan Fang, Ze Dong, Xinying Li, and Lin Chen  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 8742-8748 (2014)
http://dx.doi.org/10.1364/OE.22.008742


View Full Text Article

Enhanced HTML    Acrobat PDF (3240 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrated a 256-ary quadrature amplitude modulation (256QAM) direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) transmission system utilizing a cost-effective directly modulated laser (DML). Intra-symbol frequency-domain averaging (ISFA) is applied to suppress in-band noise while the channel response estimation and Discrete Fourier Transform-spread (DFT-spread) is used to reduce the peak-to-average power ratio (PAPR) of the transmitted OFDM signal. The bit-error ratio (BER) of 15-Gbit/s 256QAM-OFDM signal has been measured after 20-km SSMF transmission that is less than 7% forward-error-correction (FEC) threshold of 3.8 × 10−3 as the launch power into fiber is set at 6dBm. For 11.85-Gbit/s 256QAM-OFDM signal, with the aid of ISFA-based channel estimation and PAPR reduction enabled by DFT-spread, the BER after 20-km SSMF transmission can be improved from 6.4 × 10−3 to 6.8 × 10−4 when the received optical power is −6dBm.

© 2014 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems

ToC Category:
Optical Communications

History
Original Manuscript: January 23, 2014
Revised Manuscript: March 28, 2014
Manuscript Accepted: March 28, 2014
Published: April 4, 2014

Citation
Fan Li, Jianjun Yu, Yuan Fang, Ze Dong, Xinying Li, and Lin Chen, "Demonstration of DFT-spread 256QAM-OFDM signal transmission with cost-effective directly modulated laser," Opt. Express 22, 8742-8748 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-8742


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Qian, J. Yu, J. Hu, P. N. Ji, and T. Wang, “11.5Gb/s OFDM transmission over 640km SSMF using directly modulated laser,” in Proc. ECOC 2008, paper Mo3E4 (2008).
  2. R. P. Giddings, X. Q. Jin, J. M. Tang, “First experimental demonstration of 6Gb/s real-time optical OFDM transceivers incorporating channel estimation and variable power loading,” Opt. Express 17(22), 19727–19738 (2009). [CrossRef] [PubMed]
  3. X. Q. Jin, R. P. Giddings, E. Hugues-Salas, J. M. Tang, “Real-time demonstration of 128-QAM-encoded optical OFDM transmission with a 5.25bit/s/Hz spectral efficiency in simple IMDD systems utilizing directly modulated DFB lasers,” Opt. Express 17(22), 20484–20493 (2009). [CrossRef] [PubMed]
  4. H. Yang, S. C. J. Lee, E. Tangdiongga, C. Okonkwo, H. P. A. van den Boom, F. Breyer, S. Randel, A. M. J. Koonen, “47.4 Gb/s transmission over 100 m graded-index plastic optical fiber based on rate-adaptive discrete multi-tone modulation,” J. Lightwave Technol. 28(4), 352–359 (2010). [CrossRef]
  5. M. F. Huang, J. Yu, D. Qian, N. Cvijetic, and G. K. Chang, “Lightwave centralized WDM-OFDM-PON network employing cost-effective directly modulated laser,” in Proc. OFC 2009, paper OMV5 (2009).
  6. R. P. Giddings, E. Hugues-Salas, J. M. Tang, “Experimental demonstration of record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express 20(18), 20666–20679 (2012). [CrossRef] [PubMed]
  7. M. Beltrán, Y. Shi, C. Okonkwo, R. Llorente, E. Tangdiongga, T. Koonen, “In-home networks integrating high-capacity DMT data and DVB-T over large-core GI-POF,” Opt. Express 20(28), 29769–29775 (2012). [CrossRef] [PubMed]
  8. J. Yu, M. Huang, D. Qian, L. Chen, G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008). [CrossRef]
  9. J. Silva, A. Cartaxo, M. Segatto, “A PAPR reduction technique based on a constant envelope OFDM approach for fiber nonlinearity mitigation in optical direct-detection systems,” IEEE/OSA J. Opt. Commun. Netw. 4(4), 296–303 (2012). [CrossRef]
  10. W.-R. Peng, “Analysis of laser phase noise effect in direct-detection optical OFDM transmission,” J. Lightwave Technol. 28(17), 2526–2536 (2010). [CrossRef]
  11. Z. Cao, J. Yu, W. Wang, L. Chen, Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett. 22(11), 736–738 (2010). [CrossRef]
  12. Q. Yang, N. Kaneda, X. Liu, W. Shieh, “Demonstration of frequency-domain averaging based channel estimation for 40 Gb/s CO-OFDM with high PMD,” IEEE Photon. Technol. Lett. 21(20), 1544–1546 (2009). [CrossRef]
  13. X. Liu, F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express 16(26), 21944–21957 (2008). [CrossRef] [PubMed]
  14. Y. Tang, W. Shieh, B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett. 22(16), 1250–1252 (2010). [CrossRef]
  15. F. J. Effenberger, “The XG-PON System: Cost Effective 10 Gb/s Access,” J. Lightwave Technol. 29(4), 403–409 (2011). [CrossRef]
  16. S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission,” J. Lightwave Technol. 8(11), 1716–1722 (1990). [CrossRef]
  17. D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” OFC 2012, OW1H.4 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited