OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 10046–10063

Texture analysis microscopy: quantifying structure in low-fidelity images of dense fluids

Yongxiang Gao and Matthew E. Helgeson  »View Author Affiliations


Optics Express, Vol. 22, Issue 8, pp. 10046-10063 (2014)
http://dx.doi.org/10.1364/OE.22.010046


View Full Text Article

Enhanced HTML    Acrobat PDF (5746 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical images are often corrupted by noise, low contrast, uneven illumination and artefacts, which may pose significant challenges to image analysis, particularly for dense fluids. Traditionally, noise removal and contrast enhancement are achieved by global arithmetic operations on the image as a whole, and/or by image convolution with various kernels. However, these methods work under very limited conditions and can compromise detail within the image. Here, we develop a new technique, texture analysis microscopy (TAM), to overcome these challenges based on the method of image correlation. TAM recasts an image by the statistical similarities between a raw image and a template feature (e.g. a Gaussian) that best approximates features in the image. We demonstrate the superiority of TAM by applying it to low-fidelity images under conditions where traditional methods fail or have deteriorative performance, for analyses including structural correlations, particle identification and sizing.

© 2014 Optical Society of America

OCIS Codes
(070.4790) Fourier optics and signal processing : Spectrum analysis
(100.2960) Image processing : Image analysis
(100.2980) Image processing : Image enhancement
(180.0180) Microscopy : Microscopy
(100.4999) Image processing : Pattern recognition, target tracking

ToC Category:
Microscopy

History
Original Manuscript: February 18, 2014
Revised Manuscript: March 25, 2014
Manuscript Accepted: March 28, 2014
Published: April 18, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Yongxiang Gao and Matthew E. Helgeson, "Texture analysis microscopy: quantifying structure in low-fidelity images of dense fluids," Opt. Express 22, 10046-10063 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-8-10046


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. B. Murphy, Fundamentals of light microscopy and electronic imaging (John Willey & Sons, Inc., 2001).
  2. P. Sebbah, ed., Waves and imaging through complex media (Kluwer, 2001).
  3. C. J. R. Sheppard, X. Gan, M. Gu, and M. Roy, “Signal-to-noise in confocal microscope” in Handbook of Biological Confocal Microscopy, 2nd ed., J. B. Pawley, eds. (Plenum, 1995).
  4. J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol. 185(7), 1135–1148 (2009). [CrossRef] [PubMed]
  5. B. D’aguanno, R. Klein, J. M. Mendez-Alcaraz, and G. Nagele, “Polydisperse complex fluids,” Lecture Notes in Physics 415, 149–176 (1993).
  6. W. M. Gelbart, A. Ben-Shaul, “The ‘new’ science of ‘complex fluids’,” J. Phys. Chem. 100(31), 13169–13189 (1996). [CrossRef]
  7. J. C. Crocker, D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996). [CrossRef]
  8. B. Shuang, J. Chen, L. Kisley, C. F. Landes, “Troika of single particle tracking programing: SNR enhancement, particle identification, and mapping,” Phys. Chem. Chem. Phys. 16(2), 624–634 (2013). [CrossRef] [PubMed]
  9. I. Izeddin, J. Boulanger, V. Racine, C. G. Specht, A. Kechkar, D. Nair, A. Triller, D. Choquet, M. Dahan, J. B. Sibarita, “Wavelet analysis for single molecule localization microscopy,” Opt. Express 20(3), 2081–2095 (2012). [CrossRef] [PubMed]
  10. R. M. Haralick, K. Shanmugam, I. Dinstein, “Textural features for imaging classification,” IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973). [CrossRef]
  11. V. Atlamazoglou, D. Yova, N. Kavantzas, S. Loukas, “Texture analysis of fluorescence microscopic images of colonic tissue sections,” Med. Biol. Eng. Comput. 39(2), 145–151 (2001). [CrossRef] [PubMed]
  12. A. P. Sviridov, Z. Ulissi, V. Chernomordik, M. Hassan, A. H. Gandjbakhche, “Visualization of biological texture using correlation coefficient images,” J. Biomed. Opt. 11(6), 060504 (2006). [CrossRef] [PubMed]
  13. P. Guenoun, R. Gastaud, F. Perrot, D. Beysens, “Spinodal decomposition patterns in an isodensity critical binary fluid: Direct-visualization and light-scattering analyses,” Phys. Rev. A 36(10), 4876–4890 (1987). [CrossRef] [PubMed]
  14. N. A. M. Verhaegh, J. S. van Duijneveldt, J. K. G. Dhont, H. N. W. Lekkerkerker, “Fluid-fluid phase separation in colloid-polymer mixtures studied with small angle light scattering and light microscopy,” Physica A 230(3-4), 409–436 (1996). [CrossRef]
  15. D. G. A. L. Aarts, R. P. A. Dullens, H. N. W. Lekkerkerker, “Interfacial dynamics in demixing systems with ultralow interfacial tension,” New J. Phys. 7, 40 (2005). [CrossRef]
  16. E. A. G. Jamie, R. P. A. Dullens, D. G. A. L. Aarts, “Tuning the demixing of colloid-polymer systems through the dispersing solvent,” J. Phys. Condens. Matter 23(19), 194115 (2011). [CrossRef] [PubMed]
  17. T. Gibaud, P. Schurtenberger, “A closer look at arrested spinodal decomposition in protein solutions,” J. Phys. Condens. Matter 21(32), 322201 (2009). [CrossRef] [PubMed]
  18. U. Gasser, E. R. Weeks, A. Schofield, P. N. Pusey, D. A. Weitz, “Real-space imaging of nucleation and growth in colloidal crystallization,” Science 292(5515), 258–262 (2001). [CrossRef] [PubMed]
  19. A. M. Alsayed, M. F. Islam, J. Zhang, P. J. Collings, A. G. Yodh, “Premelting at defects within bulk colloidal crystals,” Science 309(5738), 1207–1210 (2005). [CrossRef] [PubMed]
  20. V. W. A. de Villeneuve, R. P. A. Dullens, D. G. A. L. Aarts, E. Groeneveld, J. H. Scherff, W. K. Kegel, H. N. W. Lekkerkerker, “Colloidal hard-sphere crystal growth frustrated by large spherical impurities,” Science 309(5738), 1231–1233 (2005). [CrossRef] [PubMed]
  21. E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287(5453), 627–631 (2000). [CrossRef] [PubMed]
  22. J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, D. A. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85(4), 888–891 (2000). [CrossRef] [PubMed]
  23. G. Marty, O. Dauchot, “Subdiffusion and cage effect in a sheared granular material,” Phys. Rev. Lett. 94(1), 015701 (2005). [CrossRef] [PubMed]
  24. K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid, G. Danuser, “Robust single-particle tracking in live-cell time-lapse sequences,” Nat. Methods 5(8), 695–702 (2008). [CrossRef] [PubMed]
  25. A. Sergé, N. Bertaux, H. Rigneault, D. Marguet, “Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes,” Nat. Methods 5(8), 687–694 (2008). [CrossRef] [PubMed]
  26. M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006). [CrossRef] [PubMed]
  27. J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008). [CrossRef] [PubMed]
  28. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  29. S. T. Hess, T. P. K. Girirajan, M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  30. Y. Gao, M. L. Kilfoil, “Accurate detection and complete tracking of large populations of features in three dimensions,” Opt. Express 17(6), 4685–4704 (2009). [CrossRef] [PubMed]
  31. M. E. Helgeson, S. E. Moran, H. Z. An, P. S. Doyle, “Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions,” Nat. Mater. 11(4), 344–352 (2012). [CrossRef] [PubMed]
  32. J. Kim, Y. Gao, C. Hebebrand, E. Peirtsegaele, M. E. Helgeson, “Polymer-surfactant complexation as a generic route to responsive viscoelastic nanoemulsions,” Soft Matter 9(29), 6897–6910 (2013). [CrossRef]
  33. A. Kuijk, A. van Blaaderen, A. Imhof, “Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio,” J. Am. Chem. Soc. 133(8), 2346–2349 (2011). [CrossRef] [PubMed]
  34. A. E. Bailey, W. C. K. Poon, R. J. Christianson, A. B. Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L. Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta, T. Lorik, P. N. Pusey, D. A. Weitz, “Spinodal decomposition in a model colloid-polymer mixture in microgravity,” Phys. Rev. Lett. 99(20), 205701 (2007). [CrossRef] [PubMed]
  35. P. J. Lu, H. Oki, C. A. Frey, G. E. Chamitoff, L. Chiao, E. M. Fincke, C. M. Foale, S. H. Magnus, W. S. McArthur, D. M. Tani, P. A. Whitson, J. N. Williams, W. V. Meyer, R. J. Sicker, B. J. Au, M. Christiansen, A. B. Schofield, D. A. Weitz, “Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space Station,” J. Real-Time Image Process. 5(3), 179–193 (2010). [CrossRef]
  36. http://www.physics.emory.edu/~weeks/idl/tracking.html
  37. M. C. Jenkins, S. U. Egelhaaf, “Confocal microscopy of colloidal particles: towards reliable, optimum coordinates,” Adv. Colloid Interface Sci. 136(1-2), 65–92 (2008). [CrossRef] [PubMed]
  38. C. A. Schneider, W. S. Rasband, K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited