OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 10072–10080

Fiber-integrated optical nano-tweezer based on a bowtie-aperture nano-antenna at the apex of a SNOM tip

Ali El Eter, Nyha M. Hameed, Fadi I. Baida, Roland Salut, Claudine Filiatre, Dusan Nedeljkovic, Elie Atie, Samuel Bole, and Thierry Grosjean  »View Author Affiliations

Optics Express, Vol. 22, Issue 8, pp. 10072-10080 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2029 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a new concept of fiber-integrated optical nano-tweezer on the basis of a single bowtie-aperture nano-antenna (BNA) fabricated at the apex of a metal-coated SNOM tip. We demonstrate 3D optical trapping of 0.5 micrometer latex beads with input power which does not exceed 1 mW. Optical forces induced by the BNA on tip are then analyzed numerically. They are found to be 103 times larger than the optical forces of a circular aperture of the same area. Such a fiber nanostructure provides a new path for manipulating nano-objects in a compact, flexible and versatile architecture and should thus open promising perspectives in physical, chemical and biomedical domains.

© 2014 Optical Society of America

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(260.3910) Physical optics : Metal optics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(180.4243) Microscopy : Near-field microscopy
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(250.5403) Optoelectronics : Plasmonics
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: February 25, 2014
Revised Manuscript: April 7, 2014
Manuscript Accepted: April 8, 2014
Published: April 18, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Ali El Eter, Nyha M. Hameed, Fadi I. Baida, Roland Salut, Claudine Filiatre, Dusan Nedeljkovic, Elie Atie, Samuel Bole, and Thierry Grosjean, "Fiber-integrated optical nano-tweezer based on a bowtie-aperture nano-antenna at the apex of a SNOM tip," Opt. Express 22, 10072-10080 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, J. Dziedzic, J. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986). [CrossRef] [PubMed]
  2. K. C. Neuman, S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004). [CrossRef]
  3. Z. Liu, C. Guo, J. Yang, L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express 14(25), 510–516 (2006). [CrossRef]
  4. J.-B. Decombe, S. Huant, J. Fick, “Single and dual fiber nano-tip optical tweezers: trapping and analysis,” Opt. Express 21(25), 521–531 (2013). [CrossRef]
  5. Z. Liu, L. Wang, P. Liang, Y. Zhang, J. Yang, L. Yuan, “Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment,” Opt. Lett. 38(14), 2617–2620 (2013). [CrossRef] [PubMed]
  6. H. Xin, Y. Li, L. Li, R. Xu, B. Li, “Optofluidic manipulation of Escherichia coli in a microfluidic channel using an abruptly tapered optical fiber,” Appl. Phys. Lett. 103(3), 033703 (2013). [CrossRef]
  7. C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photon. 1(12), 723–727 (2007). [CrossRef]
  8. S. K. Mondal, S. S. Pal, P. Kapur, “Optical fiber nano-tip and 3D bottle beam as non-plasmonic optical tweezers,” Opt. Express 20(15), 180–185 (2012). [CrossRef]
  9. Y. Liu, F. Stief, M. Yu, “Subwavelength optical trapping with a fiber-based surface plasmonic lens,” Opt. Lett. 38(5), 721–723 (2013). [CrossRef] [PubMed]
  10. M. Righini, G. Volpe, C. Girard, D. Petrov, R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008). [CrossRef] [PubMed]
  11. K. Wang, E. Schonbrun, P. Steinvurzel, K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10(9), 3506–3511 (2010). [CrossRef] [PubMed]
  12. W. Zhang, L. Huang, C. Santschi, O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010). [CrossRef] [PubMed]
  13. Y. Tanaka, K. Sasaki, “Optical trapping through the localized surface-plasmon resonance of engineered gold nanoblock pairs,” Opt. Express 19(18), 462–468 (2011). [CrossRef]
  14. Y. Pang, R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2011). [CrossRef] [PubMed]
  15. A. A. Saleh, J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12(11), 5581–5586 (2012). [CrossRef] [PubMed]
  16. M. Mivelle, I. A. Ibrahim, F. Baida, G. W. Burr, D. Nedeljkovic, D. Charraut, J.-Y. Rauch, R. Salut, T. Grosjean, “Bowtie nano-aperture as interfacebetween near-fields and a single-modefiber,” Opt. Express 18(15), 964–974 (2010). [CrossRef]
  17. T.-P. Vo, M. Mivelle, S. Callard, A. Rahmani, F. Baida, D. Charraut, A. Belarouci, D. Nedeljkovic, C. Seassal, G. Burr, T. Grosjean, “Near-field probing of slow Bloch modes on photonic crystals with a nanoantenna,” Opt. Express 20(4), 4124–4135 (2012). [CrossRef] [PubMed]
  18. M. Mivelle, T. S. van Zanten, L. Neumann, N. F. van Hulst, M. F. Garcia-Parajo, “Ultrabright bowtie nanoaperture antenna probes studied by single molecule fluorescence,” Nano Lett. 12(11), 5972–5978 (2012). [CrossRef] [PubMed]
  19. R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, D.-J. Lougnot, “Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization,” Appl. Opt. 40, 5860–5871 (2001). [CrossRef]
  20. I. Ibrahim, M. Mivelle, T. Grosjean, J.-T. Allegre, G. Burr, F. Baida, “The bowtie shaped nano-aperture: a modal study,” Opt. Lett. 35, 2448–2450 (2010). [CrossRef] [PubMed]
  21. A. Taflove, S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3 (Artech House, 2005).
  22. E. X. Jin, X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 106 (2005). [CrossRef]
  23. C. Filiâtre, C. Pignolet, A. Foissy, M. Zembala, P. Warszyński, “Electrodeposition of particles at nickel electrode surface in a laminar flow cell,” Colloids Surf., A 222(1), 55–63 (2003). [CrossRef]
  24. J. Jackson, Classical Electrodynamics (John Wiley, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: MOV (4106 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited