OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 8831–8842

Violet-green excitation for NIR luminescence of Yb3+ ions in Bi2O3-B2O3-SiO2-Ga2O3 glasses

Weiwei Li, Jimeng Cheng, Guoying Zhao, Wei Chen, Lili Hu, Malgorzata Guzik, and Georges Boulon  »View Author Affiliations

Optics Express, Vol. 22, Issue 8, pp. 8831-8842 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2208 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



60Bi2O3-20B2O3-10SiO2-10Ga2O3 glasses doped with 1-9 mol% Yb2O3 were prepared and investigated mainly on their violet-green excitation for the typical NIR emission of Yb3+, generally excited in the NIR. Two violet excitation bands at 365 nm and 405 nm are related to Yb2+ and Bi3+. 465 nm excitation band and 480 nm absorption band in the blue-green are assigned to Bi0 metal nanoparticles/grains. Yb-content-dependence of the excitation and absorption means that Bi0 is the reduced product of Bi3+, but greatly competed by the redox reaction of Yb2+↔Yb3+. It is proved that the violet-green excitations result in the NIR emission of Yb3+. On the energy transfer, the virtual level of Yb3+-Yb3+ as well as Bi0 dimers probably plays an important role. An effective and controllable way is suggested to achieve nano-optical applications by Bi0 metal nanoparticles/grains and Yb3+.

© 2014 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.5690) Materials : Rare-earth-doped materials
(250.5230) Optoelectronics : Photoluminescence
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:

Original Manuscript: January 24, 2014
Revised Manuscript: March 22, 2014
Manuscript Accepted: March 22, 2014
Published: April 7, 2014

Weiwei Li, Jimeng Cheng, Guoying Zhao, Wei Chen, Lili Hu, Malgorzata Guzik, and Georges Boulon, "Violet-green excitation for NIR luminescence of Yb3+ ions in Bi2O3-B2O3-SiO2-Ga2O3 glasses," Opt. Express 22, 8831-8842 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. M. Bobkova, E. E. Trusova, “Low-melting bismuth-borate glass: composition development,” Glass Ceram. 68(11-12), 349–352 (2012). [CrossRef]
  2. S. Bale, S. Rahman, “Glass structure and transport properties of Li2O containing zinc bismuthate glasses,” Opt. Mater. 31(2), 333–337 (2008). [CrossRef]
  3. L. Kassab, S. Tatumi, C. Mendes, L. Courrol, N. Wetter, “Optical properties of Nd doped Bi2O3-PbO-Ga2O3 glasses,” Opt. Express 6(4), 104–108 (2000). [CrossRef] [PubMed]
  4. S. Fuchi, A. Sakano, R. Mizutani, Y. Takeda, “Optimization of Bi2O3-B2O3-based glass phosphor co-doped with Yb3+ and Nd3+ for optical coherence tomography light source,” Appl. Phys. B 105(4), 877–881 (2011). [CrossRef]
  5. S. Ohara, Y. Kuroiwa, “Highly ytterbium-doped bismuth-oxide-based fiber,” Opt. Express 17(16), 14104–14108 (2009). [CrossRef] [PubMed]
  6. M. P. Kalita, S. Yoo, J. Sahu, “Bismuth doped fiber laser and study of unsaturable loss and pump induced absorption in laser performance,” Opt. Express 16(25), 21032–21038 (2008). [CrossRef] [PubMed]
  7. J. Ruan, E. Wu, B. Wu, H. Zeng, Q. Zhang, G. Dong, Y. Qiao, D. Chen, J. Qiu, “Spectral properties and broadband optical amplification of Yb-Bi codoped MgO-Al2O3-ZnO-SiO2 glasses,” J. Opt. Soc. Am. B 26(4), 778–782 (2009). [CrossRef]
  8. S. M. Kaczmarek, G. Leniec, G. Boulon, “EPR results and Raman spectroscopy as a complementary characterization of isolated Yb ions and Yb pairs in CaF2:Yb single crystals,” J. Alloy. Comp. 451(1-2), 116–121 (2008). [CrossRef]
  9. R. K. Verma, A. Rai, K. Kumar, S. B. Rai, “Up and down conversion fluorescence studies on combustion synthesized Yb3+/Yb2+: MO-Al2O3 (M=Ca, Sr and Ba) phosphors,” J. Lumin. 130(7), 1248–1253 (2010). [CrossRef]
  10. A. Bajaj, A. Khanna, B. Chen, J. G. Longstaffe, U. W. Zwanziger, J. W. Zwanziger, Y. Gómez, F. González, “Structural investigation of bismuth borate glasses and crystalline phases,” J. Non-Cryst. Solids 355(1), 45–53 (2009). [CrossRef]
  11. M. A. Marzouk, “Optical characterization of some rare earth ions doped bismuth borate glasses and effect of gamma irradiation,” J. Mol. Struct. 1019, 80–90 (2012). [CrossRef]
  12. N. Dai, B. Xu, Z. Jiang, J. Peng, H. Li, H. Luan, L. Yang, J. Li, “Effect of Yb3+ concentration on the broadband emission intensity and peak wavelength shift in Yb/Bi ions co-doped silica-based glasses,” Opt. Express 18(18), 18642–18648 (2010). [CrossRef] [PubMed]
  13. M. Peng, C. Zollfrank, L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009). [CrossRef] [PubMed]
  14. M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004). [CrossRef] [PubMed]
  15. M. Peng, J. Qiu, D. Chen, X. Meng, C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005). [CrossRef] [PubMed]
  16. X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, C. S. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13(5), 1628–1634 (2005). [CrossRef] [PubMed]
  17. Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110 (2007). [CrossRef]
  18. T. Murata, T. Mouri, “Matrix effect on absorption and infrared fluorescence properties of Bi ions in oxide glasses,” J. Non-Cryst. Solids 353(24-25), 2403–2407 (2007). [CrossRef]
  19. S. Khonthon, S. Morimoto, Y. Arai, Y. Ohishi, “Luminescence characteristics of Te- and Bi-doped glasses and glass-ceramics,” J. Ceram. Soc. Jpn. 115(1340), 259–263 (2007). [CrossRef]
  20. B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, E. Dianov, “Absorption and emission properties of Bi-doped Mg-Al-Si oxide glass system,” Appl. Phys. B 95(4), 801–805 (2009). [CrossRef]
  21. L. I. Bulatov, V. M. Mashinskii, V. V. Dvoirin, E. F. Kustov, E. M. Dianov, “Luminescent properties of bismuth centres in aluminosilicate optical fibres,” Quantum Electron. 40(2), 153–159 (2010). [CrossRef]
  22. Y. Fujimoto, “Local structure of the infrared bismuth luminescent center in Bismuth-doped silica glass,” J. Am. Ceram. Soc. 93(2), 581–589 (2010). [CrossRef]
  23. Z. Song, C. Li, Y. Li, Z. Yang, D. Zhou, Z. Yin, X. Wang, Q. Wang, T. M. Hau, Z. Zhao, Y. Yang, X. Yu, J. Qiu, “The influence of alkali ions size on the superbroadband NIR emission from bismuth-doped alkali aluminoborophosphsilicate glasses,” Opt. Mater. 35(1), 61–64 (2012). [CrossRef]
  24. M. Guan, X. Wang, Y. Zhuang, G. Lin, J. Xie, M. M. Smedskjr, J. Qiu, “Abnormal luminescence behavior in Bi-doped borosilicate glasses,” J. Electrochem. Soc. 158(7), G151 (2011). [CrossRef]
  25. X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, C. S. Zhu, “Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses,” Opt. Express 13(5), 1635–1642 (2005). [CrossRef] [PubMed]
  26. S. Khonthon, S. Morimoto, Y. Arai, Y. Ohishi, “Redox equilibrium and NIR luminescence of Bi2O3-containing glasses,” Opt. Mater. 31(8), 1262–1268 (2009). [CrossRef]
  27. V. O. Sokolov, V. G. Plotnichenko, E. M. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett. 33(13), 1488–1490 (2008). [CrossRef] [PubMed]
  28. B. I. Denker, B. I. Galagan, V. V. Osiko, I. L. Shulman, S. E. Sverchkov, E. M. Dianov, “Factors affecting the formation of near infrared-emitting optical centers in Bi-doped glasses,” Appl. Phys. B 98(2-3), 455–458 (2010). [CrossRef]
  29. A. N. Romanov, Z. T. Fattakhova, D. M. Zhigunov, V. N. Korchak, V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (I). Generation of low-valence bismuth species by Bi3+ and Bi0 synproportionation,” Opt. Mater. 33(4), 631–634 (2011). [CrossRef]
  30. S. V. Krasil’nikov, N. G. Gorashchenko, “Effect of composition on Bi2O3-SiO2-GeO2 glass properties,” Glass Ceram. 69(5-6), 186–190 (2012). [CrossRef]
  31. S. P. Singh, B. Karmakar, “Oxidative control of surface plasmon resonance of bismuth nanometal in bismuth glass nanocomposites,” Mater. Chem. Phys. 119(3), 355–358 (2010). [CrossRef]
  32. S. P. Singh, B. Karmakar, “Controlled oxidative synthesis of Bi nanoparticles and emission centers in bismuth glass nanocomposites for photonic application,” Opt. Mater. 33(11), 1760–1765 (2011). [CrossRef]
  33. O. Sanz, E. Haro-Poniatowski, J. Gonzalo, J. M. Fernández Navarro, “Influence of the melting conditions of heavy metal oxide glasses containing bismuth oxide on their optical absorption,” J. Non-Cryst. Solids 352(8), 761–768 (2006). [CrossRef]
  34. G. Boulon, B. Moine, J.-C. Bourcet, “Spectroscopic properties of 3P1 and 3P0 excited states of Bi3+ ions in germanate glass,” Phys. Rev. B 22(3), 1163–1169 (1980). [CrossRef]
  35. G. Boulon, “Why so deep research on Yb3+-doped optical inorganic materials?” J. Alloy. Comp. 451(1-2), 1–11 (2008). [CrossRef]
  36. Y. Teng, J. Zhou, X. Liu, S. Ye, J. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express 18(9), 9671–9676 (2010). [CrossRef] [PubMed]
  37. J. A. Jiménez, S. Lysenko, H. Liu, “Photoluminescence via plasmon resonance energy transfer in silver nanocomposite glasses,” J. Appl. Phys. 104(5), 054313 (2008). [CrossRef]
  38. J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012). [CrossRef] [PubMed]
  39. D. K. Gramotnev, S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited