OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 8856–8870

Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation

K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst  »View Author Affiliations

Optics Express, Vol. 22, Issue 8, pp. 8856-8870 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (9833 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Broad-band Mach-Zehnder interferometry is analytically described and experimentally demonstrated as an analytical tool capable of high accuracy refractive index measurements over a wide spectral range. Suitable photonic engineering of the interferometer sensing and reference waveguides result in sinusoidal TE and TM spectra with substantially different eigen-frequencies. This allows for the instantaneous deconvolution of multiplexed polarizations and enables large spectral shifts and noise reduction through filtering in the Fourier Transform domain. Due to enhanced sensitivity, optical systems can be designed that employ portable spectrum analyzers with nm range resolution without compromising the sensor analytical capability. Practical detection limits in the 10−6-10−7 RIU range are achievable, including temperature effects. Finally, a proof of concept device is realized on a silicon microphotonic chip that monolithically integrates broad-band light sources and single mode silicon nitride waveguides. Refractive index detection limits rivaling that of ring resonators with externally coupled laser sources are demonstrated. Sensitivities of 20 μm/RIU and spectral shifts in the tens of a pm are obtained.

© 2014 Optical Society of America

OCIS Codes
(130.6010) Integrated optics : Sensors
(230.5750) Optical devices : Resonators
(130.3990) Integrated optics : Micro-optical devices

ToC Category:

Original Manuscript: December 3, 2013
Revised Manuscript: February 18, 2014
Manuscript Accepted: February 21, 2014
Published: April 7, 2014

K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst, "Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation," Opt. Express 22, 8856-8870 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013). [CrossRef]
  2. I. M. White, X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008). [CrossRef] [PubMed]
  3. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008). [CrossRef] [PubMed]
  4. M. La Notte, V. M. N. Passaro, “Ultra high sensitivity chemical photonic sensing by Mach–Zehnder interferometer enhanced Vernier-effect,” Sens. Actuat. B 176, 994–1007 (2013). [CrossRef]
  5. N. A. Yebo, S. P. Sree, E. Levrau, C. Detavernier, Z. Hens, J. A. Martens, R. Baets, “Selective and reversible ammonia gas detection with nanoporous film functionalized silicon photonic micro-ring resonator,” Opt. Express 20(11), 11855–11862 (2012). [CrossRef] [PubMed]
  6. M. Kitsara, K. Misiakos, I. Raptis, E. Makarona, “Integrated optical frequency-resolved Mach-Zehnder interferometers for label-free affinity sensing,” Opt. Express 18(8), 8193–8206 (2010). [CrossRef] [PubMed]
  7. R. G. Heideman, P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design,fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuat. B 61(1-3), 100–127 (1999). [CrossRef]
  8. S. Dante, D. Duval, B. Sepúlveda, A. B. González-Guerrero, J. R. Sendra, L. M. Lechuga, “All-optical phase modulation for integrated interferometric biosensors,” Opt. Express 20(7), 7195–7205 (2012). [CrossRef] [PubMed]
  9. A. Chynoweth, K. Mckay, “Photon emission from avalanche breakdown in silicon,” Phys. Rev. 102(2), 369–376 (1956). [CrossRef]
  10. K. Misiakos, S. E. Kakabakos, P. S. Petrou, H. H. Ruf, “A Monolithic silicon optoelectronic transducer as a real-time affinity biosensor,” Anal. Chem. 76(5), 1366–1373 (2004). [CrossRef] [PubMed]
  11. E. Mavrogiannopoulou, P. S. Petrou, S. E. Kakabakos, K. Misiakos, “Real-time detection of BRCA1 gene mutations using a monolithic silicon optocoupler array,” Biosens. Bioelectron. 24(5), 1341–1347 (2009). [CrossRef] [PubMed]
  12. K. Misiakos, I. Raptis, A. Gerardino, H. Contopanagos, M. Kitsara, “A monolithic photonic microcantilever device for in situ monitoring of volatile compounds,” Lab Chip 9(9), 1261–1266 (2009). [CrossRef] [PubMed]
  13. Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, M. K. Park, “Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens Actuat. B 188, 681–688 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited