OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 8908–8918

The influence of optical fiber bundle parameters on the transmission of laser speckle patterns

Jing Wang and Seemantini K. Nadkarni  »View Author Affiliations


Optics Express, Vol. 22, Issue 8, pp. 8908-8918 (2014)
http://dx.doi.org/10.1364/OE.22.008908


View Full Text Article

Enhanced HTML    Acrobat PDF (1835 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser speckle imaging (LSI) techniques provide important functional information about tissue perfusion and mechanical properties. To perform LSI in vivo, laser speckle patterns are transmitted via optical fiber bundles incorporated within small-diameter endoscopes. Inter-fiber crosstalk due to mode coupling in fiber bundles can result in erroneous speckle statistics and therefore reduces the accuracy of LSI analysis. In this paper, we investigate the influence of multiple parameters that influence crosstalk between neighboring cores within optical fiber bundles and govern the modulation of transmitted laser speckle patterns. Our results show that in addition to large core-to-core separation, large refractive index contrast between core and cladding material, reduced number of propagating modes and variability in core size are essential parameters for accurate speckle pattern transmission to conduct endoscopic LSI.

© 2014 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(060.2350) Fiber optics and optical communications : Fiber optics imaging
(060.2400) Fiber optics and optical communications : Fiber properties
(110.6150) Imaging systems : Speckle imaging
(170.2150) Medical optics and biotechnology : Endoscopic imaging

ToC Category:
Fiber Optics

History
Original Manuscript: January 6, 2014
Revised Manuscript: March 11, 2014
Manuscript Accepted: March 24, 2014
Published: April 7, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Jing Wang and Seemantini K. Nadkarni, "The influence of optical fiber bundle parameters on the transmission of laser speckle patterns," Opt. Express 22, 8908-8918 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-8-8908


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Dainty, Laser Speckle and Related Phenomena (Springer-Verlag, 1984).
  2. J. W. Goodman, Speckle Phenomena in Optics : Theory and Applications (Roberts & Company Publishers, 2007).
  3. D. A. Boas, A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010). [CrossRef] [PubMed]
  4. S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005). [CrossRef] [PubMed]
  5. S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008). [CrossRef] [PubMed]
  6. Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011). [CrossRef] [PubMed]
  7. Z. Hajjarian, S. K. Nadkarni, “Evaluating the viscoelastic properties of tissue from laser speckle fluctuations,” Sci. Rep. 2, 316 (2012). [CrossRef] [PubMed]
  8. A. K. Dunn, H. Bolay, M. A. Moskowitz, D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001). [CrossRef] [PubMed]
  9. L. Song, D. Elson, “Endoscopic laser speckle contrast imaging system using a fibre image guide,” Proc. SPIE 7907, 79070F (2011). [CrossRef]
  10. D. A. Zimnyakov, A. P. Sviridov, L. V. Kuznetsova, S. A. Baranov, N. Y. Ignatieva, “Monitoring of tissue thermal modification with a bundle-based full-field speckle analyzer,” Appl. Opt. 45(18), 4480–4490 (2006). [CrossRef] [PubMed]
  11. H. Zhang, P. Li, N. Feng, J. Qiu, B. Li, W. Luo, Q. Luo, “Correcting the detrimental effects of nonuniform intensity distribution on fiber-transmitting laser speckle imaging of blood flow,” Opt. Express 20(1), 508–517 (2012). [CrossRef] [PubMed]
  12. A. F. Gmitro, D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett. 18(8), 565–567 (1993). [CrossRef] [PubMed]
  13. T. Xie, D. Mukai, S. Guo, M. Brenner, Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett. 30(14), 1803–1805 (2005). [CrossRef] [PubMed]
  14. V. Dubaj, A. Mazzolini, A. Wood, M. Harris, “Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope,” J. Microsc. 207(2), 108–117 (2002). [CrossRef] [PubMed]
  15. W. Göbel, J. N. D. Kerr, A. Nimmerjahn, F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett. 29(21), 2521–2523 (2004). [CrossRef] [PubMed]
  16. R. Juškattis, T. Wilson, T. Watson, “Real‐time white light reflection confocal microscopy using a fibre‐optic bundle,” Scanning 19(1), 15–19 (1997). [CrossRef]
  17. A. Komiyama, M. Hashimoto, “Crosstalk and mode coupling between cores of image fibres,” Electron. Lett. 25(16), 1101–1103 (1989). [CrossRef]
  18. A. Komiyama, M. Hashimoto, “A new class of crosstalk in image fibers,” Opt. Commun. 107(1-2), 49–53 (1994). [CrossRef]
  19. X. Chen, K. L. Reichenbach, C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Express 16(26), 21598–21607 (2008). [CrossRef] [PubMed]
  20. J.-M. Liu, Photonic Devices (Cambridge University Press, 2005).
  21. K. L. Reichenbach, C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express 15(5), 2151–2165 (2007). [CrossRef] [PubMed]
  22. N. Ortega-Quijano, F. Fanjul-Vélez, J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283(4), 633–638 (2010). [CrossRef]
  23. A. Snyder, “Coupled-Mode Theory for Optical Fibers,” J. Opt. Soc. Am. 62(11), 1267–1277 (1972). [CrossRef]
  24. A. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).
  25. A. Hardy, W. Streifer, “Coupled mode theory of parallel waveguides,” J. Lightwave Technol. 3(5), 1135–1146 (1985). [CrossRef]
  26. J. Goodman, Statistical Optics (Wiley, 2000).
  27. D. Marcuse, “Coupled mode theory of round optical fibers,” Bell Syst. Tech. J. 52(6), 817–842 (1973). [CrossRef]
  28. M. Skorobogatiy, K. Saitoh, M. Koshiba, “Full-vectorial coupled mode theory for the evaluation of macro-bending loss in multimode fibers. application to the hollow-core photonic bandgap fibers,” Opt. Express 16(19), 14945–14953 (2008). [CrossRef] [PubMed]
  29. M. Koshiba, K. Saitoh, K. Takenaga, S. Matsuo, “Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory,” Opt. Express 19(26), B102–B111 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited