OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 8943–8948

Detection of chemical vapor with high sensitivity by using the symmetrical metal-cladding waveguide-enhanced Goos-Hänchen shift

Yiyou Nie, Yuanhua Li, Zhijing Wu, Xianping Wang, Wen Yuan, and Minghuang Sang  »View Author Affiliations

Optics Express, Vol. 22, Issue 8, pp. 8943-8948 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2149 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel and simple optical structure, i.e., the symmetrical metal-cladding waveguide, in which a polymer layer is added into the guiding layer, for sensitive detection of chemical vapor by using the enhanced Goos-Hänchen (GH) shift (nearly a millimeter scale). Owing to the high sensitivity of the excited ultrahigh-order modes, the vapor-induced effect (swelling effect and refractive index change) in the polymer layer will lead to a dramatic variation of the GH shift. The detected GH shift signal is irrelevant to the power fluctuation of the incident light. The detection limit of 9.5 ppm for toluene and 28.5 ppm for benzene has been achieved.

© 2014 Optical Society of America

OCIS Codes
(130.6010) Integrated optics : Sensors
(160.5470) Materials : Polymers
(280.1545) Remote sensing and sensors : Chemical analysis

ToC Category:

Original Manuscript: January 20, 2014
Revised Manuscript: March 2, 2014
Manuscript Accepted: March 5, 2014
Published: April 7, 2014

Yiyou Nie, Yuanhua Li, Zhijing Wu, Xianping Wang, Wen Yuan, and Minghuang Sang, "Detection of chemical vapor with high sensitivity by using the symmetrical metal-cladding waveguide-enhanced Goos-Hänchen shift," Opt. Express 22, 8943-8948 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Mah, K. B. Thurbide, “Acoustic methods of detection in gas chromatography,” J. Sep. Sci. 29(12), 1922–1930 (2006). [CrossRef] [PubMed]
  2. J. R. Stetter, J. Li, “Amperometric gas sensors--a review,” Chem. Rev. 108(2), 352–366 (2008). [CrossRef] [PubMed]
  3. K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, H. Ming, “Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity,” Opt. Express 16(23), 18599–18604 (2008). [CrossRef] [PubMed]
  4. T. L. Lowder, J. D. Gordon, S. M. Schultz, R. H. Selfridge, “Volatile organic compound sensing using a surface-relief D-shaped fiber Bragg grating and a polydimethylsiloxane layer,” Opt. Lett. 32(17), 2523–2525 (2007). [CrossRef] [PubMed]
  5. Y. Sun, S. I. Shopova, G. Frye-Mason, X. Fan, “Rapid chemical-vapor sensing using optofluidic ring resonators,” Opt. Lett. 33(8), 788–790 (2008). [CrossRef] [PubMed]
  6. J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S. J. Ja, S. K. Wang, M. J. Bai, H. Taub, M. Almasri, X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010). [CrossRef] [PubMed]
  7. R. Bernini, M. Tonezzer, F. Mottola, L. Zeni, A. Quaranta, G. Maggioni, S. Carturan, G. D. Mea, “Volatile organic compounds detection using porphyrin-based metal-cladding leaky waveguides,” Sens. Actuators B Chem. 127(1), 231–236 (2007). [CrossRef]
  8. P. Xiao, M. Deng, “Polymer-coated symmetrical metal-cladding waveguide for chemical vapor detection with high sensitivity,” Sci. China Phys. Mech. Astron. 55(11), 2024–2029 (2012). [CrossRef]
  9. K. Artmann, “Berechnung der seitenversetzung des totalreflextierten strahles,” Ann. Phys. 437(1-2), 87–102 (1948). [CrossRef]
  10. J. L. Birman, D. N. Pattanayak, A. Puri, “Presiction of a resonance enhanced laser-beam displacement at total internal reflection in semiconductors,” Phys. Rev. Lett. 50(21), 1664–1667 (1983). [CrossRef]
  11. L. Chen, Z. Cao, F. Ou, H. Li, Q. Shen, H. Qiao, “Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides,” Opt. Lett. 32(11), 1432–1434 (2007). [CrossRef] [PubMed]
  12. X. B. Yin, L. Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89(26), 261108 (2006). [CrossRef]
  13. Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, Y. He, “Oscillating wave sensor based on the Goos-Hänchen effect,” Appl. Phys. Lett. 92, 06117 (2008).
  14. X. Wang, C. Yin, J. Sun, H. Li, Y. Wang, M. Ran, Z. Cao, “High-sensitivity temperature sensor using the ultrahigh order mode-enhanced Goos-Hänchen effect,” Opt. Express 21(11), 13380–13385 (2013). [CrossRef] [PubMed]
  15. Y. Feng, Z. Cao, Q. Shen, F. Chen, “Effect of nonparallelism of guiding air-liquid layers on the reflection dip in attenuated total reflection,” Appl. Opt. 46(1), 58–60 (2007). [CrossRef] [PubMed]
  16. H. Li, Z. Cao, H. Lu, Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83(14), 2757–2759 (2003). [CrossRef]
  17. H. Lu, Z. Cao, H. Li, Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85(20), 4579–4581 (2004). [CrossRef]
  18. Y. Wang, Z. Cao, H. Li, J. Hao, T. Yu, Q. Shen, “Electric control of spatial beam position based on the Goos-Hänchen effect,” Appl. Phys. Lett. 93(9), 091103 (2008). [CrossRef]
  19. R. P. Podgorsek, H. Franke, “Selective optical detection of aromatic vapors,” Appl. Opt. 41(4), 601–608 (2002). [CrossRef] [PubMed]
  20. C. F. Li, Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 69(5), 055601 (2004). [CrossRef] [PubMed]
  21. Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited