OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 8949–8961

Multipole and plane wave expansions of diverging and converging fields

Thanh Xuan Hoang, Xudong Chen, and Colin J. R. Sheppard  »View Author Affiliations

Optics Express, Vol. 22, Issue 8, pp. 8949-8961 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1824 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents and compares two basis systems, spherical harmonics and plane waves, for studying diverging and converging beams in an optical system. We show a similarity between a converging field and the time reversed field of a radiation field. We present and analyze the differences between the Debye-Wolf diffraction integral and the multipole theory for focusing of polarized light. The Debye-Wolf diffraction integral gives a well-known anomalous behavior on the optical axis and at the edge of the focused beam that can be avoided by using the multipole theory.

© 2014 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(180.0180) Microscopy : Microscopy
(260.0260) Physical optics : Physical optics

ToC Category:
Diffraction and Gratings

Original Manuscript: January 20, 2014
Revised Manuscript: March 12, 2014
Manuscript Accepted: March 13, 2014
Published: April 7, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Thanh Xuan Hoang, Xudong Chen, and Colin J. R. Sheppard, "Multipole and plane wave expansions of diverging and converging fields," Opt. Express 22, 8949-8961 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born, W. Wolf, Principles of Optics, 7 (Cambridge University, 2005).
  2. N. I. Zheludev, “What diffraction limit?,” Nat. Mater. 7, 420–422 (2008). [CrossRef] [PubMed]
  3. R. P. Feynman, R. P. Leighton, M. Sands, The Feynman Lectures on Physics (Addison-Wesley, 2006), Vol. II.
  4. C. J. R. Sheppard, “High-aperture beams,” J. Opt. Soc. Am. A 18, 1579–1587 (2001). [CrossRef]
  5. H. Noh, S. M. Popoff, H. Cao, “Broadband subwavelength focusing of light using a passive sink,” Opt. Express 21, 17435–17446 (2013). [CrossRef] [PubMed]
  6. S. Heugel, A. S. Villar, M. Sondermann, U. Peschel, G. Leuchs, “On the analogy between a single atom and an optical resonator,” Laser Phys. 20, 100–106 (2010). [CrossRef]
  7. A. Sentenac, P. C. Chaumet, G. Leuchs, “Total absorption of light by a nanoparticle: an electromagnetic sink in the optical regime,” Opt. Lett. 38, 818–820 (2013). [CrossRef] [PubMed]
  8. J. de Rosny, M. Fink, “Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink,” Phys. Rev. Lett. 89, 124301 (2002). [CrossRef] [PubMed]
  9. P. Lueg, “Process of silencing sound oscillations,” US Patent No.2043416 (1936).
  10. R. W. Hellwarth, “Generation of time-reversed wave fronts by nonlinear refraction,” J. Opt. Soc. Am. 67, 1–3 (1977). [CrossRef]
  11. Y. Urzhumov, C. Ciracì, D. R. Smith, “Optical time reversal with graphene,” Nat. Phys. 9, 393–394 (2013). [CrossRef]
  12. G. Lerosey, J. de Rosny, A. Tourin, M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315, 1120–1122 (2007). [CrossRef] [PubMed]
  13. J. D. Lawson, “Some attributes of real and virtual photons,” Contemp. Phys. 11, 575–580 (1970). [CrossRef]
  14. O. Keller, Quantum Theory of Near-Field Electrodynamics (Springer, 2011).
  15. G. Leuchs, M. Sondermann, “Time reversal symmetry in optics,” Phys. Scr. 85, 058101 (2012). [CrossRef]
  16. S. Quabis, R. Dorn, M. Eberler, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000). [CrossRef]
  17. R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  18. E. Mudry, E. Le Moal, P. Ferrand, P. C. Chaumet, A. Sentenac, “Isotropic diffraction-limited focusing using a single objective lens,” Phys. Rev. Lett. 105, 203903 (2010). [CrossRef]
  19. G. Leuchs, M. Sondermann, “Light-matter interaction in free space,” J. Mod. Opt. 60, 36–42 (2013). [CrossRef] [PubMed]
  20. M. Sondermann, R. Maiwald, H. Konermann, N. Lindlein, U. Peschel, G. Leuchs, “Design of a mode converter for efficient light-atom coupling in free space,” Appl. Phys. B 89, 489–492 (2007). [CrossRef]
  21. A. Erdélyi, “Zur theorie der kugelwellen von Artur Erdélyi,” Physica IV, 107–120 (1937). [CrossRef]
  22. A. J. Devaney, E. Wolf, “Multipole expansions and plane wave representations of the electromagnetic field,” J. Math. Phys. 15, 234–244 (1974). [CrossRef]
  23. T. X. Hoang, X. Chen, C. J. R. Sheppard, “Multipole theory for tight focusing of polarized light, including radially polarized and other special cases,” J. Opt. Soc. Am. A 29, 32–43 (2012). [CrossRef]
  24. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (John Wiley, 1998).
  25. Y. D. Chong, L. Ge, H. Cao, A. D. Stone, “Coherent perfect absorbers: Time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010). [CrossRef] [PubMed]
  26. W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011). [CrossRef] [PubMed]
  27. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics, 2 (World Scientific, 2006). [CrossRef]
  28. E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. R. Soc. London Ser. A 253, 349–357 (1959). [CrossRef]
  29. B. Richards, “Diffraction in systems of high relative aperture,” in Astronomical Optics and Related Subjects, Z. Kopal, ed. (North Holland, 1955).
  30. B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959). [CrossRef]
  31. T. X. Hoang, X. Chen, C. J. R. Sheppard, “Rigorous analytical modeling of high-aperture focusing through a spherical interface,” J. Opt. Soc. Am. A 30, 1426–1440 (2013). [CrossRef]
  32. T. X. Hoang, X. Chen, C. J. R. Sheppard, “Interpretation of the scattering mechanism for particles in a focused beam,” Phys. Rev. A 86, 033817 (2012). [CrossRef]
  33. J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, 2008).
  34. C. J. R. Sheppard, “Intermediate field behind a nanostructure,” Phys. Rev. A 88, 033839 (2013). [CrossRef]
  35. U. Leonhardt, “Perfect imaging without negative refraction,” New J. Phys. 11, 093040 (2009). [CrossRef]
  36. U. Leonhardt, T. G. Philbin, “Perfect imaging with positive refraction in three dimensions,” Phys. Rev. A 81, 011804 (2010). [CrossRef]
  37. R. J. Blaikie, “Comment on ‘Perfect imaging without negative refraction’,” New J. Phys. 12, 058001 (2010). [CrossRef]
  38. R. Merlin, “Comment on “Perfect imaging with positive refraction in three dimensions”,” Phys. Rev. A 82, 057801 (2010). [CrossRef]
  39. U. Leonhardt, “Reply to “Comment on ‘Perfect imaging with positive refraction in three dimensions’”,” Phys. Rev. A 82, 057802 (2010). [CrossRef]
  40. Y. G. Ma, S. Sahebdivan, C. K. Ong, T. Tyc, U. Leonhardt, ”Evidence for subwavelength imaging with positive refraction,” New J. Phys. 13, 033016 (2011). [CrossRef]
  41. R. Merlin, “Maxwell’s fish-eye lens and the mirage of perfect imaging,” J. Opt. 13, 024017 (2011). [CrossRef]
  42. X. Zhang, “Perfect lenses in focus: No drain, no gain,” Nature 480, 42–43 (2011). [CrossRef]
  43. S. K. Rhodes, K. A. Nugent, A. Roberts, “Precision measurement of the electromagnetic fields in the focal region of a high-numerical-aperture lens using a tapered fiber probe,” J. Opt. Soc. Am. A 19, 1689–1693 (2002). [CrossRef]
  44. J. C. Maxwell, “On the general laws of optical instruments,” Q. J. Pure Appl. Math. 2, 271 (1858).
  45. J. B. Pendry, “Negative refraction makes perfect lens,” Phys. Rev. Lett. 85, 3966 (2000). [CrossRef] [PubMed]
  46. C. J. R. Sheppard, C. J. Cogswell, “Reflection and transmission confocal microscopy,” presented at the Optics in Medicine, Biology and Environmental Research: Proceedings of the International Conference on Optics Within Life Sciences, Garmisch-Partenkirchen, Germany, 1993, 1990.
  47. S. W. Hell, E. H. K. Stelzer, “Properties of a 4Pi confocal flourescence microscope,” J. Opt. Soc. Am. A 9, 2159–2166 (1992). [CrossRef]
  48. M. G. L. Gustafsson, D. A. Agard, J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100nm axial resolution,” J. Microsc. 195, 10–16 (1999). [CrossRef] [PubMed]
  49. A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013). [CrossRef] [PubMed]
  50. G. C. Sherman, W. C. Chew, “Aperture and far-field distributions expressed by the Debye integral representation of focused fields,” J. Opt. Soc. Am. 72, 1076–1083 (1981). [CrossRef]
  51. N. G. Van Kampen, “An asymptotic treatment of diffraction problems,” Physica XIV, 575–589 (1949). [CrossRef]
  52. M. R. Foreman, S. S. Sherif, P. R. T. Munro, P. Török, “Inversion of the Debye-Wolf diffraction integral using an eigenfunction representation of the electric fields in the focal region,” Opt. Express 16, 4901–4917 (2008). [CrossRef] [PubMed]
  53. W. H. Carter, “Bandlimited angular spectrum approximation to a scalar dipole field,” Opt. Commun. 2, 142–148 (1970). [CrossRef]
  54. W. H. Carter, “Bandlimited angular spectrum approximation to a spherical scalar wave field,” J. Opt. Soc. Am. 65, 1054–1058 (1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited