OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 9024–9032

Sub-diffraction resolution pump-probe microscopy with shot-noise limited sensitivity using laser diodes

Jun Miyazaki, Hiromichi Tsurui, Akiko Hayashi-Takagi, Haruo Kasai, and Takayoshi Kobayashi  »View Author Affiliations


Optics Express, Vol. 22, Issue 8, pp. 9024-9032 (2014)
http://dx.doi.org/10.1364/OE.22.009024


View Full Text Article

Enhanced HTML    Acrobat PDF (1225 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the use of intensity-modulated laser diodes to implement pump-probe microscopy and achieved sub-diffraction resolution imaging with shot-noise limited sensitivity with a scheme of balanced detection. This technique has several applications for various types of induced transmission change, including excited-state absorption, ground state absorption bleaching and stimulated emission. By using our technique, biological imaging of mouse T cells and the axons of neurons in the cerebral cortex was demonstrated.

© 2014 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(140.2020) Lasers and laser optics : Diode lasers
(180.0180) Microscopy : Microscopy

ToC Category:
Microscopy

History
Original Manuscript: February 7, 2014
Revised Manuscript: March 26, 2014
Manuscript Accepted: April 1, 2014
Published: April 7, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Jun Miyazaki, Hiromichi Tsurui, Akiko Hayashi-Takagi, Haruo Kasai, and Takayoshi Kobayashi, "Sub-diffraction resolution pump-probe microscopy with shot-noise limited sensitivity using laser diodes," Opt. Express 22, 9024-9032 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-8-9024


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007). [CrossRef] [PubMed]
  2. D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32(18), 2641–2643 (2007). [CrossRef] [PubMed]
  3. T. Chen, F. Lu, A. M. Streets, P. Fei, J. Quan, Y. Huang, “Optical imaging of non-fluorescent nanodiamonds in live cells using transient absorption microscopy,” Nanoscale 5(11), 4701–4705 (2013). [CrossRef] [PubMed]
  4. S. S. Chong, W. Min, X. S. Xie, “Ground-state depletion microscopy: Detection sensitivity of single-molecule optical absorption at room temperature,” J. Phys. Chem. Lett. 1(23), 3316–3322 (2010). [CrossRef]
  5. W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009). [CrossRef] [PubMed]
  6. T. Dellwig, P. Y. Lin, F. J. Kao, “Long-distance fluorescence lifetime imaging using stimulated emission,” J. Biomed. Opt. 17(1), 011009 (2012). [CrossRef] [PubMed]
  7. C. Y. Dong, C. Buehler, P. T. So, T. French, E. Gratton, “Implementation of intensity-modulated laser diodes in time-resolved, pump-probe fluorescence microscopy,” Appl. Opt. 40(7), 1109–1115 (2001). [CrossRef] [PubMed]
  8. C. Y. Dong, P. T. C. So, T. French, E. Gratton, “Fluorescence lifetime imaging by asynchronous pump-probe microscopy,” Biophys. J. 69(6), 2234–2242 (1995). [CrossRef] [PubMed]
  9. T. Chen, F. Lu, A. M. Streets, P. Fei, J. M. Quan, Y. Y. Huang, “Optical imaging of non-fluorescent nanodiamonds in live cells using transient absorption microscopy,” Nanoscale 5(11), 4701–4705 (2013). [CrossRef] [PubMed]
  10. L. Tong, Y. Liu, B. D. Dolash, Y. Jung, M. N. Slipchenko, D. E. Bergstrom, J. X. Cheng, “Label-free imaging of semiconducting and metallic carbon nanotubes in cells and mice using transient absorption microscopy,” Nat. Nanotechnol. 7(1), 56–61 (2011). [CrossRef] [PubMed]
  11. T. Ye, D. Fu, W. S. Warren, “Nonlinear absorption microscopy,” Photochem. Photobiol. 85(3), 631–645 (2009). [CrossRef] [PubMed]
  12. D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, W. S. Warren, “Probing skin pigmentation changes with transient absorption imaging of eumelanin and pheomelanin,” J. Biomed. Opt. 13(5), 054036 (2008). [CrossRef] [PubMed]
  13. T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, W. S. Warren, “Pump-probe imaging differentiates melanoma from melanocytic nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011). [CrossRef] [PubMed]
  14. M. J. Simpson, K. E. Glass, J. W. Wilson, P. R. Wilby, J. D. Simon, W. S. Warren, “Pump-probe microscopic imaging of Jurassic-aged eumelanin,” J Phys Chem Lett 4(11), 1924–1927 (2013). [CrossRef] [PubMed]
  15. L. Wei, W. Min, “Pump-probe optical microscopy for imaging nonfluorescent chromophores,” Anal. Bioanal. Chem. 403(8), 2197–2202 (2012). [CrossRef] [PubMed]
  16. M. Celebrano, P. Kukura, A. Renn, V. Sandoghdar, “Single-molecule imaging by optical absorption,” Nat. Photonics 5(2), 95–98 (2011). [CrossRef]
  17. P. Kukura, M. Celebrano, A. Renn, V. Sandoghdar, “Single-Molecule Sensitivity in Optical Absorption at Room Temperature,” J. Phys. Chem. Lett. 1(23), 3323–3327 (2010). [CrossRef]
  18. J. R. Lakowicz, Topics in Fluorescence Spectroscopy, Vol 5: Nonlinear and Two-Photon Induced Fluorescence (Springer, 1997), Vol. 5.
  19. A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science 330(6002), 353–356 (2010). [CrossRef] [PubMed]
  20. S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006). [CrossRef]
  21. K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39(Part 1, No. 9A), 5316–5322 (2000). [CrossRef]
  22. A. Avramescu, T. Lermer, J. Müller, C. Eichler, G. Bruederl, M. Sabathil, S. Lutgen, U. Strauss, “True Green Laser Diodes at 524 nm with 50 mW Continuous Wave Output Power onc-Plane GaN,” Appl. Phys. Express 3(6), 061003 (2010). [CrossRef]
  23. S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, M. Ikeda, “High-Power (over 100 mW) Green Laser Diodes on Semipolar {2021} GaN Substrates Operating at Wavelengths beyond 530 nm,” Appl. Phys. Express 5(8), 082102 (2012). [CrossRef]
  24. J. Kasai, R. Akimoto, T. Hasama, H. Ishikawa, S. Fujisaki, S. Tanaka, S. Tsuji, “Green-to-yellow continuous-wave operation of BeZnCdSe quantum-well laser diodes at room temperature,” Appl. Phys. Express 4(8), 082102 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited