OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 9048–9062

Measuring isotropic subsurface light transport

Kathrin Happel, Edgar Dörsam, and Philipp Urban  »View Author Affiliations

Optics Express, Vol. 22, Issue 8, pp. 9048-9062 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1591 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Subsurface light transport can affect the visual appearance of materials significantly. Measuring and modeling this phenomenon is crucial for accurately reproducing colors in printing or for rendering translucent objects on displays. In this paper, we propose an apparatus to measure subsurface light transport employing a reference material to cancel out adverse signals that may bias the results. In contrast to other approaches, the setup enables improved focusing on rough surfaces (e.g. uncoated paper). We derive a measurement equation that may be used to deduce the point spread function (PSF) of subsurface light transport. Main contributions are the usage of spectrally-narrowband exchangeable LEDs allowing spectrally-resolved measurements and an approach based on quadratic programming for reconstructing PSFs in the case of isotropic light transport.

© 2014 Optical Society of America

OCIS Codes
(110.4850) Imaging systems : Optical transfer functions
(290.5820) Scattering : Scattering measurements
(290.7050) Scattering : Turbid media

ToC Category:

Original Manuscript: February 17, 2014
Revised Manuscript: March 28, 2014
Manuscript Accepted: March 28, 2014
Published: April 7, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Kathrin Happel, Edgar Dörsam, and Philipp Urban, "Measuring isotropic subsurface light transport," Opt. Express 22, 9048-9062 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. C. Yule, W. J. Nielsen, “The penetration of light into paper and its effect on halftone reproduction,” Tech. Assn. Graphic Arts, 4, 65–76 (1951).
  2. G. L. Rogers, “Optical dot gain in a halftone print,” J. Imaging Sci. Technol. 41(6), 643–656 (1997).
  3. G. Rogers, “Optical dot gain: lateral scattering probabilities,” J. Imaging Sci. Technol. 42(4), 341–345 (1998).
  4. J. S. Arney, T. Wu, C. Blehm, “Modeling the Yule-Nielsen Effect on Color Halftones,” J. Imaging Sci. Technol. 42(4), 335–340 (1998).
  5. J. A. S. Viggiano, “New models for the reflectance spectra produced by halftone-based hardcopy,” Ph.D. thesis, Center for Imaging Science, Rochester Institute of Technology, Rochester, NY, USA (2010).
  6. M. Hašan, M. Fuchs, W. Matusik, H. Pfister, S. Rusinkiewicz, “Physical reproduction of materials with specified subsurface scattering,” ACM Trans. Graphics 29, 61 (2010). [CrossRef]
  7. Y. Dong, J. Wang, F. Pellacini, X. Tong, B. Guo, “Fabricating spatially-varying subsurface scattering,” ACM Trans. Graphics 29, 62 (2010). [CrossRef]
  8. M. Goesele, H. Lensch, J. Lang, C. Fuchs, H. Seidel, “Disco: acquisition of translucent objects,” ACM Trans. Graphics 23, 835–844 (2004). [CrossRef]
  9. X. Tong, J. Wang, S. Lin, B. Guo, H. Shum, “Modeling and rendering of quasi-homogeneous materials,” ACM Trans. Graphics 24, 1054–1061 (2005). [CrossRef]
  10. P. Peers, K. vom Berge, W. Matusik, R. Ramamoorthi, J. Lawrence, S. Rusinkiewicz, P. Dutré, “A compact factored representation of heterogeneous subsurface scattering,” ACM Trans. Graphics 25, 746–753 (2006). [CrossRef]
  11. J. Yule, D. Howe, J. Altman, “The Effect of the Spread-Function of Paper on Halftone Reproduction,” TAPPI Journal 7, 337–344 (1967).
  12. P. G. Engeldrum, B. Pridham, “Application of turbid medium theory to paper spread function measurements,” TAGA Proceedings 1, 339–352 (1995).
  13. C. Ackermann, H. Praast, L. Göttsching, “Einfluss von Lichtstreuung und Lichtabsorption auf die Bildwiedergabe gedruckter Rasterflächen,” Tech. Rep. 12395N, AiF (2002).
  14. H. Wakeshima, T. Kunishi, “Light scattering in paper and its effect on halftone reproduction,” J. Opt. Soc. Am. 58(2), 272–273 (1968). [CrossRef]
  15. S. Inoue, N. Tsumura, Y. Miyake, “Measuring mtf of paper by sinusoidal test pattern projection,” J. Imaging Sci. Technol. 41(6), 657–661 (1997).
  16. G. L. Rogers, “Measurement of the modulation transfer function of paper,” Appl. Opt. 37, 7235–7240 (1998). [CrossRef]
  17. J. Arney, C. D. Arney, M. Katsube, P. G. Engeldrum, “An mtf analysis of papers,” J. Imaging Sci. Technol. 40, 19–25 (1996).
  18. K. Happel, M. Walter, P. Urban, E. Dörsam, “Measuring anisotropic light scatter within graphic arts papers for modeling optical dot gain,” “IS&T/SID, 18th Color and Imaging Conference,” San Antonio, Texas, 347–352 (2010).
  19. M. Ukishima, H. Kaneko, T. Nakaguchi, N. Tsumura, M. Hauta-Kasari, J. Parkkinen, Y. Miyake, “A simple method to measure mtf of paper and its application for dot gain analysis,” IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences 92, 3328–3335 (2009). [CrossRef]
  20. M. Walter, “Methode zur Messung orthotroper Lichtstreuung in grafischen Papieren,” Master’s thesis, Technische Universität Darmstadt (2009).
  21. K. Happel, “Led-based light scattering measurements of papers for printing applications,” Ph.D. thesis, Technische Universität Darmstadt, Germany (2011).
  22. E. S. 1288, “Standard for Characterization of Image Sensors and Cameras,” European Machine Vision Association (2010).
  23. K. Happel, P. Urban, E. Dörsam, X. Ludewig, “Classifying Papers According to their Light Scatter Properties,” “Midterm Meeting of the International Colour Association (AIC),” Zurich, Switzerland, 138–141 (2011).
  24. B. Jähne, Digital Image Processing, 6 (Springer, 2005).
  25. F. Berg, “Isotrope Lichtstreuung in Papier - Neue Überlegungen zur Kubelka-Munk-Theorie,” Ph.D. thesis, Technische Hochschule Darmstadt (1997).
  26. F. Ruckdeschel, O. Hauser, “Yule-nielsen effect in printing: a physical analysis,” Applied Optics, 17, 3376–3383 (1978). [CrossRef] [PubMed]
  27. G. Fischer, J. Rodriguez-Giles, K. R. Scheuter, “Ein physikalisches modell für die beschreibung von licht-streuprozessen,” Die Farbe 30, 199–220 (1982).
  28. S. Gustavson, “Dot gain in colour halftones,” Ph.D. thesis, Sweden (1997).
  29. F. P. Callahan, “Light scattering in halftone prints,” J. Opt. Soc. Am. 42(2), 104–105 (1952). [CrossRef]
  30. A. Murray, “Monochrome reproduction in photoengraving,” Journal of the Franklin Institute, 221, 721–744 (1936). [CrossRef]
  31. J. Viggiano, “The Color of Halftone Tints,” in “TAGA Proceedings,” 647–661 (1985).
  32. E. Marchand, “Derivation of the point spread function from the line spread function,” J. Opt. Soc. Am. 54(7), 915–919 (1964). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited