OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 9063–9072

2D IR spectroscopy with phase-locked pulse pairs from a birefringent delay line

Julien Réhault, Margherita Maiuri, Cristian Manzoni, Daniele Brida, Jan Helbing, and Giulio Cerullo  »View Author Affiliations


Optics Express, Vol. 22, Issue 8, pp. 9063-9072 (2014)
http://dx.doi.org/10.1364/OE.22.009063


View Full Text Article

Enhanced HTML    Acrobat PDF (3278 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a new scheme for two-dimensional IR spectroscopy in the partially collinear pump-probe geometry. Translating birefringent wedges allow generating phase-locked pump pulses with exceptional phase stability, in a simple and compact setup. A He-Ne tracking scheme permits to scan continuously the acquisition time. For a proof-of-principle demonstration we use lithium niobate, which allows operation up to 5 μm. Exploiting the inherent perpendicular polarizations of the two pump pulses, we also demonstrate signal enhancement and scattering suppression.

© 2014 Optical Society of America

OCIS Codes
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(320.7160) Ultrafast optics : Ultrafast technology

ToC Category:
Spectroscopy

History
Original Manuscript: February 19, 2014
Revised Manuscript: March 21, 2014
Manuscript Accepted: March 21, 2014
Published: April 7, 2014

Citation
Julien Réhault, Margherita Maiuri, Cristian Manzoni, Daniele Brida, Jan Helbing, and Giulio Cerullo, "2D IR spectroscopy with phase-locked pulse pairs from a birefringent delay line," Opt. Express 22, 9063-9072 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-8-9063


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Hamm, M. Lim, R. M. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102, 6123–6138 (1998). [CrossRef]
  2. P. Hamm, M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University, 2011). [CrossRef]
  3. M. Cho, Two-Dimensional Optical Spectroscopy (CRC Press, 2009). [CrossRef]
  4. G. D. Goodno, G. Dadusc, R. J. D. Miller, “Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics,” J. Opt. Soc. Am. B 15, 1791–1794 (1998). [CrossRef]
  5. M. C. Asplund, M. T. Zanni, R. M. Hochstrasser, “Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes,” Proc. Natl. Acad. Sci. U.S.A. 97, 8219–8224 (2000). [CrossRef] [PubMed]
  6. S.-H. Shim, D. B. Strasfeld, E. C. Fulmer, M. T. Zanni, “Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation,” Opt. Lett. 31, 838–840 (2006). [CrossRef] [PubMed]
  7. L. P. DeFlores, R. A. Nicodemus, A. Tokmakoff, “Two-dimensional Fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett. 32, 2966 (2007). [CrossRef] [PubMed]
  8. U. Selig, F. Langhojer, F. Dimler, T. Lhrig, C. Schwarz, B. Gieseking, T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett. 33, 2851–2853 (2008). [CrossRef] [PubMed]
  9. J. Helbing, P. Hamm, “Compact implementation of Fourier transform two-dimensional IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B 28, 171–178 (2011). [CrossRef]
  10. V. Cervetto, J. Helbing, J. Bredenbeck, P. Hamm, “Double-resonance versus pulsed Fourier transform two-dimensional infrared spectroscopy: An experimental and theoretical comparison,” J. Chem. Phys. 121, 5935–5942 (2004). [CrossRef] [PubMed]
  11. E. H. G. Backus, S. Garrett-Roe, P. Hamm, “Phasing problem of heterodyne-detected two-dimensional infrared spectroscopy,” Opt. Lett. 33, 2665–2667 (2008). [CrossRef] [PubMed]
  12. W. Xiong, M. T. Zanni, “Signal enhancement and background cancellation in collinear two-dimensional spectroscopies,” Opt. Lett. 33, 1371–1373 (2008). [CrossRef] [PubMed]
  13. J. Réhault, J. Helbing, “Angle determination and scattering suppression in polarization-enhanced two-dimensional infrared spectroscopy in the pump-probe geometry,” Opt. Express 20, 21665–21677 (2012). [CrossRef] [PubMed]
  14. J. Réhault, J. Helbing, “Exploring the polarization degrees of freedom in collinear two-dimensional infrared spectroscopy,” EPJ Web of Conferences 41, 05003 (2013). [CrossRef]
  15. S.-H. Shim, M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009). [CrossRef] [PubMed]
  16. D. R. Skoff, J. E. Laaser, S. S. Mukherjee, C. T. Middleton, M. T. Zanni, “Simplified and economical 2D IR spectrometer design using a dual acousto-optic modulator,” Chem. Phys. 422, 8–15 (2013). [CrossRef]
  17. D. Brida, C. Manzoni, G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37, 3027–3029 (2012). [CrossRef] [PubMed]
  18. M. T. Zanni, N.-H. Ge, Y. S. Kim, R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. USA 98, 11265–11270 (2001). [CrossRef] [PubMed]
  19. J. Réhault, V. Zanirato, M. Olivucci, J. Helbing, “Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys. 134, 124516 (2011). [CrossRef] [PubMed]
  20. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).
  21. D. E. Zelmon, D. L. Small, D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide-doped lithium niobate,” J. Opt. Soc. Am. B 14, 3319–3322 (1997). [CrossRef]
  22. N. Demirdöven, M. Khalil, O. Golonzka, A. Tokmakoff, “Dispersion compensation with optical materials for compression of intense sub-100-fs mid-infrared pulses” Opt. Lett. 27, 433 (2002). [CrossRef]
  23. C. T. Middleton, A. M. Woys, S. S. Mukherjee, M. T. Zanni, “Residue-specific structural kinetics of proteins through the union of isotope labeling, mid-IR pulse shaping, and coherent 2D IR spectroscopy,” Methods 52, 12–22 (2010). [CrossRef] [PubMed]
  24. S. T. Roberts, J. J. Loparo, K. Ramasesha, A. Tokmakoff, “A fast-scanning Fourier transform 2D IR interferometer,” Opt. Commun. 284, 1062–1066 (2011). [CrossRef]
  25. K. F. Lee, A. Bonvalet, P. Nuernberger, M. Joffre, “Unobtrusive interferometer tracking by pathlength oscillation for multidimensionalspectroscopy,” Opt. Express 17, 12379–12384 (2009). [CrossRef] [PubMed]
  26. M. Downs, K. Raine, “An unmodulated bi-directional fringe-counting interferometer system for measuring displacement,” Precision Engineering 1, 85–88 (1979). [CrossRef]
  27. L. Lepetit, G. Chériaux, M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995). [CrossRef]
  28. U. Schlarb, K. Betzler, “Refractive indices of lithium niobate as a function of wavelength and composition,” J. Appl. Phys. 73, 3472–3476 (1993). [CrossRef]
  29. R. Bloem, S. Garrett-Roe, H. Strzalka, P. Hamm, P. Donaldson, “Enhancing signal detection and completely eliminating scattering using quasi-phase-cycling in 2D IR experiments,” Opt. Express 18, 27067–27078 (2010). [CrossRef]
  30. F. Perakis, P. Hamm, “Two-dimensional infrared spectroscopy of supercooled water,” J. Phys. Chem. B 115, 5289–5293 (2011). [CrossRef]
  31. T. Steinel, J. B. Asbury, J. Zheng, M. D. Fayer, “Watching hydrogen bonds break: a transient absorption study of water,” J. Phys. Chem. A 108, 10957–10964 (2004). [CrossRef] [PubMed]
  32. R. Maksimenka, P. Nuernberger, K. F. Lee, A. Bonvalet, J. Milkiewicz, C. Barta, M. Klima, T. Oksenhendler, P. Tournois, D. Kaplan, M. Joffre, “Direct mid-infrared femtosecond pulse shaping with a calomel acousto-optic programmable dispersive filter,” Opt. Lett. 35, 3565–3567 (2010). [CrossRef] [PubMed]
  33. S. P. Davis, M. C. Abrams, J. W. Brault, Fourier Transform Spectrometry (Academic Press, 2001).
  34. K. Ataka, T. Kottke, J. Heberle, “Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems,” Angew. Chem. 49, 5416–5424 (2010). [CrossRef]
  35. H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310–313 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited