OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 9171–9181

Photosensitive and all-optically fast-controllable photonic bandgap device and laser in a dye-doped blue phase with a low-concentration azobenzene liquid crystal

Jia-De Lin, Yu-Meng Lin, Ting-Shan Mo, and Chia-Rong Lee  »View Author Affiliations

Optics Express, Vol. 22, Issue 8, pp. 9171-9181 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3017 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work demonstrates the feasibility of a novel photosensitive and all-optically fast-controllable photonic bandgap (PBG) device based on a dye-doped blue phase (DDBP), embedded with a low-concentration azobenzene liquid crystal (azo-LC). PBG of the DDBP can be reversibly fast-tuned off and on with the successive illumination of a weak UV and green beams. UV irradiation can transform the trans azo-LCs into bend cis isomers, which can easily disturb LCs at the boundary between the double twisting cylinders (DTCs) and the disclinations, and, then, quickly destabilize BPI to become a BPIII-like texture with randomly-oriented DTCs. Doing so may quickly destroy the BP PBG structure. However, with the successive illumination of a green beam, the BPI PBG device can be fast-turned on, owing to the fast disappearance of the disturbance of the azo-LCs on the boundary LCs via the green-beam-induced cistrans back isomerization. The response time and irradiated energy density for turning off (on) the BP PBG device under the UV (green) beam irradiation are only 120 ms (120 ms) and 0.764 mJ/cm2 (2.12 mJ/cm2), respectively, which are a thousand-fold reduction in photoswitching a traditional cholesteric LC (CLC) PBG device based on similar experimental conditions (i.e., materials used, azo-LC concentration (1 wt%), spectral position of PBG peak, sample thickness, and temperature difference for a working temperature lower than the clearing one). The BP PBG device can significantly contribute to efforts to develop a photosensitive and all-optically fast-controlling LC laser.

© 2014 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(230.1150) Optical devices : All-optical devices
(160.1585) Materials : Chiral media
(160.5293) Materials : Photonic bandgap materials
(160.5335) Materials : Photosensitive materials

ToC Category:
Optical Devices

Original Manuscript: January 29, 2014
Revised Manuscript: March 3, 2014
Manuscript Accepted: April 1, 2014
Published: April 8, 2014

Jia-De Lin, Yu-Meng Lin, Ting-Shan Mo, and Chia-Rong Lee, "Photosensitive and all-optically fast-controllable photonic bandgap device and laser in a dye-doped blue phase with a low-concentration azobenzene liquid crystal," Opt. Express 22, 9171-9181 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008), Chap. 1.
  2. E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, J. D. Joannopoulos, “Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ = 1.55 mum wavelengths,” Opt. Lett. 26(5), 286–288 (2001). [CrossRef] [PubMed]
  3. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express 12(8), 1575–1582 (2004). [CrossRef] [PubMed]
  4. V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdré, M. V. Kotlyar, L. O’Faolain, T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett. 32(5), 530–532 (2007). [CrossRef] [PubMed]
  5. M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” J. Lightwave Technol. 19(12), 1970–1975 (2001). [CrossRef]
  6. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999). [CrossRef] [PubMed]
  7. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998). [CrossRef]
  8. K. Lee, S. A. Asher, “Photonic crystal chemical sensors: pH and ionic strength,” J. Am. Chem. Soc. 122(39), 9534–9537 (2000). [CrossRef]
  9. D. M. Beggs, T. P. White, L. O’Faolain, T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33(2), 147–149 (2008). [CrossRef] [PubMed]
  10. P. Oswald and P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor and Francis, 2005), Chap. B.VIII.
  11. P. P. Crooker, Chirality in Liquid Crystals (Springer-Verlag, 2001), Chap. 7.
  12. H. Kikuchi, “Liquid crystalline blue phases,” Struct. Bond. 128, 99–117 (2008). [CrossRef]
  13. P. Etchegoin, “Blue phases of cholesteric liquid crystals as thermotropic photonic crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(1), 1435–1437 (2000). [CrossRef] [PubMed]
  14. S.-Y. Lu, L.-C. Chien, “Electrically switched color with polymer-stabilized blue-phase liquid crystals,” Opt. Lett. 35(4), 562–564 (2010). [CrossRef] [PubMed]
  15. H. J. Coles, M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436(7053), 997–1000 (2005). [CrossRef] [PubMed]
  16. A. Chanishvili, G. Chilaya, G. Petriashvili, P. J. Collings, “Trans-cis isomerization and the blue phases,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71(5), 051705 (2005). [CrossRef] [PubMed]
  17. H.-Y. Liu, C.-T. Wang, C.-Y. Hsu, T.-H. Lin, J.-H. Liu, “Optically tuneable blue phase photonic band gaps,” Appl. Phys. Lett. 96(12), 121103 (2010). [CrossRef]
  18. W. Cao, A. Muñoz, P. Palffy-Muhoray, B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002). [CrossRef] [PubMed]
  19. S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, T. Nagamura, “Laser emission from a polymer-stabilized liquid-crystalline blue phase,” Adv. Mater. 18(1), 48–51 (2006). [CrossRef]
  20. H. Coles, S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010). [CrossRef]
  21. T. Isomura, H. Yoshida, A. Fujii, M. Ozaki, “Laser emission from a photopolymerized cholesteric blue phase II,” Mol. Cryst. Liq. Cryst. 516(1), 197–201 (2010). [CrossRef]
  22. A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012). [CrossRef]
  23. S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M.-H. Song, S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013). [CrossRef] [PubMed]
  24. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. 19(20), 3244–3247 (2007). [CrossRef]
  25. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express 18(9), 9651–9657 (2010). [CrossRef] [PubMed]
  26. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007). [CrossRef]
  27. T. J. White, R. L. Bricker, L. V. Natarajan, S. V. Serak, N. V. Tabiryan, T. J. Bunning, “Polymer stabilization of phototunable cholesteric liquid crystals,” Soft Matter 5(19), 3623–3628 (2009). [CrossRef]
  28. T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009). [CrossRef]
  29. P. V. Shibaev, R. L. Sanford, D. Chiappetta, V. Milner, A. Genack, A. Bobrovsky, “Light controllable tuning and switching of lasing in chiral liquid crystals,” Opt. Express 13(7), 2358–2363 (2005). [CrossRef] [PubMed]
  30. G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, P. V. Shibaev, “Reversible tuning of lasing in cholesteric liquid crystals controlled by light-emitting diodes,” Adv. Mater. 19(4), 565–568 (2007). [CrossRef]
  31. T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
  32. H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998). [CrossRef]
  33. M.-C. Cheng, C.-C. Chu, Y.-C. Su, W.-T. Chang, V. K. S. Hsiao, K.-T. Yong, W.-C. Law, P. N. Prasad, “Light-induced photoluminescence switching using liquid crystal-dispersed quantum dots,” IEEE Photonics J. 4(1), 19–25 (2012). [CrossRef]
  34. C.-R. Lee, J.-D. Lin, Y.-J. Huang, S.-C. Huang, S.-H. Lin, C.-P. Yu, “All-optically controllable dye-doped liquid crystal infiltrated photonic crystal fiber,” Opt. Express 19(10), 9676–9689 (2011). [CrossRef] [PubMed]
  35. C.-R. Lee, J.-D. Lin, B.-Y. Huang, T.-S. Mo, S.-Y. Huang, “All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye,” Opt. Express 18(25), 25896–25905 (2010). [CrossRef] [PubMed]
  36. H.-C. Jeong, K. V. Le, M.-J. Gim, S.-T. Hur, S.-W. Choi, F. Araoka, K. Ishikawa, H. Takezoe, “Transition between widened blue phases by light irradiation using photo-active bent-core liquid crystal with chiral dopant,” J. Mater. Chem. 22, 4627–4630 (2012). [CrossRef]
  37. J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited