OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 9206–9219

Single-mode chirally-coupled-core fibers with larger than 50µm diameter cores

Xiuquan Ma, Cheng Zhu, I-Ning Hu, Alex Kaplan, and Almantas Galvanauskas  »View Author Affiliations

Optics Express, Vol. 22, Issue 8, pp. 9206-9219 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1995 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we report an advance in increasing core size of effective single-mode chirally-coupled-core (CCC) Ge-doped and Yb-doped double-clad fibers into 55µm to 60µm range, and experimentally demonstrate their robust single-mode performance. Theoretical and numerical description of CCC fibers structures with multiple side cores and polygon-shaped central core is consistent with experimental results. Detailed experimental characterization of 55µm-core CCC fibers based on spatially and spectrally resolved broadband measurements (S2 technique) shows that modal performance of these large core fibers well exceeds that of standard 20μm core step-index large mode area fibers.

© 2014 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(140.0140) Lasers and laser optics : Lasers and laser optics

ToC Category:
Fiber Optics

Original Manuscript: February 14, 2014
Revised Manuscript: March 26, 2014
Manuscript Accepted: April 1, 2014
Published: April 8, 2014

Xiuquan Ma, Cheng Zhu, I-Ning Hu, Alex Kaplan, and Almantas Galvanauskas, "Single-mode chirally-coupled-core fibers with larger than 50µm diameter cores," Opt. Express 22, 9206-9219 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Richardson, J. Nilsson, W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010). [CrossRef]
  2. A. Tünnermann, T. Schreiber, J. Limpert, “Fiber lasers and amplifiers: an ultrafast performance evolution,” Appl. Opt. 49(25), F71–F78 (2010). [CrossRef] [PubMed]
  3. J. A. Buck, Fundamentals of Optical Fibers, 2nd ed. (John Wiley, 2004).
  4. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23(1), 52–54 (1998). [CrossRef] [PubMed]
  5. J. P. Koplow, D. A. V. Kliner, L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000). [CrossRef] [PubMed]
  6. H. Injeyan and G. D. Goodno, High Power Laser Handbook, Chapter 18 (McGraw-Hill Professional, 2011).
  7. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, C. Jakobsen, “Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier,” Opt. Express 12(7), 1313–1319 (2004). [CrossRef] [PubMed]
  8. C. D. Brooks, F. Di Teodoro, “Multimegawatt peakpower, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rod-like photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006). [CrossRef]
  9. H. P. Uranus, “Theoretical study on the multimodeness of a commercial endlessly single-mode PCF,” Opt. Commun. 283(23), 4649–4654 (2010). [CrossRef]
  10. K. R. Hansen, T. T. Alkeskjold, J. Broeng, J. Lægsgaard, “Thermo-optical effects in high-power Ytterbium-doped fiber amplifiers,” Opt. Express 19(24), 23965–23980 (2011). [CrossRef] [PubMed]
  11. X. Ma, C.-H. Liu, G. Chang, A. Galvanauskas, “Angular-momentum coupled optical waves in chirally-coupled-core fibers,” Opt. Express 19(27), 26515–26528 (2011). [CrossRef] [PubMed]
  12. L. Dong, X. Peng, J. Li, “Leakage channel optical fibers with large effective area,” J. Opt. Soc. Am. B 24(8), 1689–1697 (2007). [CrossRef]
  13. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett. 36(5), 689–691 (2011). [CrossRef] [PubMed]
  14. V. Sudesh, T. Mccomb, Y. Chen, M. Bass, M. Richardson, J. Ballato, A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008). [CrossRef]
  15. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006). [CrossRef] [PubMed]
  16. J. R. Marciante, R. G. Roides, V. V. Shkunov, D. A. Rockwell, “Near-diffraction-limited operation of step-index large-mode-area fiber lasers via gain filtering,” Opt. Lett. 35(11), 1828–1830 (2010). [CrossRef] [PubMed]
  17. M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, M. Fujimaki, “Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers,” Opt. Express 20(14), 15061–15070 (2012). [CrossRef] [PubMed]
  18. TIA Standards, FOTP-80 IEC-60793–1-44 Optical Fibres - Part 1–44: Measurement Methods and Test Procedures - Cut-Off Wavelength.
  19. S. Wielandy, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express 15(23), 15402–15409 (2007). [CrossRef] [PubMed]
  20. J. W. Nicholson, A. D. Yablon, S. Ramachandran, S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008). [CrossRef] [PubMed]
  21. M. Laurila, T. T. Alkeskjold, J. Lægsgaard, J. Broeng, “Spatial and spectral imaging of LMA photonic crystal fiber amplifiers,” Proc. SPIE 7914, 79142D (2011). [CrossRef]
  22. F. Kong, K. Saitoh, D. Mcclane, T. Hawkins, P. Foy, G. Gu, L. Dong, “Mode area scaling with all-solid photonic bandgap fibers,” Opt. Express 20(24), 26363–26372 (2012). [CrossRef] [PubMed]
  23. G. Gu, F. Kong, T. W. Hawkins, P. Foy, K. Wei, B. Samson, L. Dong, “Impact of fiber outer boundaries on leaky mode losses in leakage channel fibers,” Opt. Express 21(20), 24039–24048 (2013). [CrossRef] [PubMed]
  24. X. Ma, “Understanding and controlling angular momentum coupled optical waves in chirally-coupled-core (CCC) fibers,” PhD Thesis, University of Michigan at Ann Arbor.
  25. C. Zhu, I.-N. Hu, X. Ma, and A. Galvanauskas, “Single mode 9.1mJ and 10ns pulses from 55um core Yb-doped CCC fiber MOPA,” in CLEO: Science and Innovations, San Jose, California, United States, June 9–14, 2013, Paper CTu1K.
  26. X. Ma, I.-N. Hu, A. Galvanauskas, “Propagation-length independent SRS threshold in chirally-coupled-core fibers,” Opt. Express 19(23), 22575–22581 (2011). [CrossRef] [PubMed]
  27. X. Ma, I.-N. Hu, and A. Galvanauskas, “Propagation length independent nonlinearity threshold in Stokes-wave suppressed SRS in chirally-coupled-core fibers,” in Nonlinear Optics (NLO) (2011), Paper NTuE7.
  28. I.-N. Hu, X. Ma, C. Zhu, W.-Z. Chang, C.-H. Liu, T. Sosnowski, A. Galvanauskas, “Experimental demonstration of SRS suppression in chirally-coupled-core fibers,” in ASSP (2012), Paper AT1A.
  29. M. L. Stock, C.-H. Liu, A. Kuznetsov, G. Tudury, A. Galvanauskas, T. Sosnowski, “Polarized, 100 kW peak power, high brightness nanosecond lasers based on 3C optical fiber,” Proc. SPIE 7914, 79140U (2011). [CrossRef]
  30. C. Zhu, I.-N. Hu, X. Ma, L. Siiam, and A. Galvanauskas, “Single-frequency and single-transverse mode Yb-doped CCC fiber MOPA with robust polarization SBS-free 511W output,” in ASSP (2011), Paper AMC5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (171 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited