OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 9254–9261

Pulse-analysis-pulse investigation of femtosecond laser-induced periodic surface structures on silicon in air

J. Vincenc Oboňa, J. Z. P. Skolski, G. R. B. E. Römer, and A. J. Huis in t Veld  »View Author Affiliations

Optics Express, Vol. 22, Issue 8, pp. 9254-9261 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2369 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new approach to experimentally investigate laser-induced periodic surface structures (LIPSSs) is introduced. Silicon was iteratively exposed to femtosecond laser pulses at λ = 800 nm and normal incidence in ambient air and at a fluence slightly over the single-pulse modification threshold. After each laser pulse, the topography of the surface was inspected by confocal microscopy. Subsequently, the sample was reproducibly repositioned in the laser setup, to be exposed to the next laser pulse. By this approach, the initiation and spatial evolution (“growth”) of the LIPSSs were analyzed as function of the number of pulses applied. It was found that, after the first laser pulses, the ridges of the LIPSSs elevate, and valleys between the ridges deepen, by a few tens of nanometers relative to the initial surface. An electromagnetic model, discussed in earlier works, predicted that the spatial periodicity of LIPSSs decreases with the number of laser pulses applied. This implies material transport and reorganization of the irradiated material on the surface, due to each laser pulse. However, our experiments show a negligible shift of the lateral positions of the LIPSSs on the surface.

© 2014 Optical Society of America

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(180.1790) Microscopy : Confocal microscopy
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Laser Microfabrication

Original Manuscript: January 30, 2014
Revised Manuscript: March 28, 2014
Manuscript Accepted: April 1, 2014
Published: April 9, 2014

J. Vincenc Oboňa, J. Z. P. Skolski, G. R. B. E. Römer, and A. J. Huis in t Veld, "Pulse-analysis-pulse investigation of femtosecond laser-induced periodic surface structures on silicon in air," Opt. Express 22, 9254-9261 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965). [CrossRef]
  2. B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express 18(3), 2913–2924 (2010). [CrossRef] [PubMed]
  3. G. Daminelli, J. Krüger, W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334–341 (2004). [CrossRef]
  4. J. Reif, O. Varlamova, F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008). [CrossRef]
  5. A. Y. Vorobyev, C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008). [CrossRef]
  6. D. Scorticati, G.-W. Römer, D. F. de Lange, B. Huis in ’t Veld, “Ultra-short-pulsed laser-machined nanogratings of laser-induced periodic surface structures on thin molybdenum layers,” J. Nanophotonics 6(1), 063528 (2012). [CrossRef]
  7. J. Eichstädt, G. R. B. E. Römer, A. J. H. in’t Veld, “Towards friction control using laser-induced periodic surface structures,” Phys. Procedia. 12, 7–15 (2011). [CrossRef]
  8. E. Rebollar, I. Frischauf, M. Olbrich, T. Peterbauer, S. Hering, J. Preiner, P. Hinterdorfer, C. Romanin, J. Heitz, “Proliferation of aligned mammalian cells on laser-nanostructured polystyrene,” Biomaterials 29(12), 1796–1806 (2008). [CrossRef] [PubMed]
  9. J. E. Sipe, J. F. Young, J. S. Preston, H. M. van Driel, “Laser-induced periodic surface structure. I. theory,” Phys. Rev. B 27(2), 1141–1154 (1983). [CrossRef]
  10. J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012). [CrossRef]
  11. J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012). [CrossRef]
  12. M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009). [CrossRef] [PubMed]
  13. J. Bonse, J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010). [CrossRef]
  14. J. Bonse, A. Rosenfeld, J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009). [CrossRef]
  15. J. Z. P. Skolski, G. R. B. E. Römer, J. Vincenc Obona, A. J. Huis in ’t Veld, “Modeling laser-induced periodic surface structures: FDTD-feedback simulations,” J. Appl. Phys. 115, 103102 (2014). [CrossRef]
  16. A. Borowiec, M. Couillard, G. A. Botton, H. K. Haugen, “Sub-surface damage in indium phosphide caused by micromachining of grooves with femtosecond and nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79, 1887–1890 (2004).
  17. H. M. van Driel, J. E. Sipe, J. F. Young, “Laser-induced coherent modulation of solid and liquid surfaces,” JOL 30, 446–471 (1985).
  18. L. V. Zhigilei, http://www.faculty.virginia.edu/CompMat/Resources.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: MP4 (324 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited