OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 9262–9270

Transparent near-infrared reflector metasurface with randomly dispersed silver nanodisks

Takeharu Tani, Shinya Hakuta, Naoharu Kiyoto, and Masayuki Naya  »View Author Affiliations


Optics Express, Vol. 22, Issue 8, pp. 9262-9270 (2014)
http://dx.doi.org/10.1364/OE.22.009262


View Full Text Article

Enhanced HTML    Acrobat PDF (3862 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present large-area ultrathin metasurfaces that transmit visible light and reflect near-infrared (NIR) wavelengths. These visible-transparent metasurfaces consist of 10 nm-thick monolayer of randomly dispersed silver nanodisks, that is only λ/90 thickness at the reflection peak wavelength. Calculated optical properties of the structure show that the reflectance for NIR wavelengths increases monotonically as a function of increasing nanodisk density, while the absorption saturates and scattering of visible light decreases. We demonstrate that the proposed structure is easy to fabricate with chemically synthesized silver particles using the bottom-up method and has industrially applications.

© 2014 Optical Society of America

OCIS Codes
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Metamaterials

History
Original Manuscript: February 14, 2014
Revised Manuscript: March 20, 2014
Manuscript Accepted: April 1, 2014
Published: April 9, 2014

Citation
Takeharu Tani, Shinya Hakuta, Naoharu Kiyoto, and Masayuki Naya, "Transparent near-infrared reflector metasurface with randomly dispersed silver nanodisks," Opt. Express 22, 9262-9270 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-8-9262


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968). [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  3. R. A. Shelby, D. R. Smith, S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  4. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000). [CrossRef] [PubMed]
  5. W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007). [CrossRef]
  6. N. Yu, F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014). [CrossRef] [PubMed]
  7. A. V. Kildishev, A. Boltasseva, V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013). [CrossRef] [PubMed]
  8. Y. Zhao, A. Alu, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011). [CrossRef]
  9. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003). [CrossRef] [PubMed]
  10. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012). [CrossRef] [PubMed]
  11. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011). [CrossRef] [PubMed]
  12. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012). [CrossRef] [PubMed]
  13. P. C. Li, Y. Zhao, A. Alu, E. T. Yu, “Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface,” Appl. Phys. Lett. 99(22), 221106 (2011). [CrossRef]
  14. A. A. Lacis, J. E. Hansen, “A parameterization for the absorption of solar radiation in the Earth’s atmosphere,” J. Atmos. Sci. 31(1), 118–133 (1974). [CrossRef]
  15. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  16. M. Hu, J. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, Y. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35(11), 1084–1094 (2006). [CrossRef] [PubMed]
  17. Y. Sun, Y. Xia, “Gold and silver nanoparticles: a class of chromophores with colors tunable in the range from 400 to 750nm,” Analyst 128(6), 686–691 (2003). [CrossRef]
  18. Y. Sun, Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002). [CrossRef] [PubMed]
  19. Y. Yu, S. Chang, C. Lee, C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101(34), 6661–6664 (1997). [CrossRef]
  20. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2–4), 243–247 (1998). [CrossRef]
  21. E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003). [CrossRef] [PubMed]
  22. R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003). [CrossRef] [PubMed]
  23. M. Maillard, S. Giorgio, M. Pileni, “Silver nanodisks,” Adv. Mater. 14(15), 1084–1086 (2002). [CrossRef]
  24. A. Brioude, M. P. Pileni, “Silver nanodisks: optical properties study using the discrete dipole approximation method,” J. Phys. Chem. B 109(49), 23371–23377 (2005). [CrossRef] [PubMed]
  25. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1998).
  26. Y. Matsunami, N. Kiyoto, S. Hakuta, T. Tani, M. Naya, and K. Kamada, “Heat ray-shielding material,” US Patent 2011/0111210 A1 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited