OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 9291–9300

Sensitive and rapid laser diagnostic for shock tube kinetics studies using cavity-enhanced absorption spectroscopy

Kai Sun, Shengkai Wang, Ritobrata Sur, Xing Chao, Jay B. Jeffries, and Ronald K. Hanson  »View Author Affiliations

Optics Express, Vol. 22, Issue 8, pp. 9291-9300 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1697 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the first application of cavity-enhanced absorption spectroscopy (CEAS) using a coherent light source for sensitive and rapid gaseous species time-history measurements in a shock tube. Off-axis alignment and fast scanning of the laser wavelength were used to minimize coupling noise in a low-finesse cavity. An absorption gain factor of 83 with a measurement time resolution of 20 µs was demonstrated for C2H2 detection using a near-infrared transition near 1537 nm, corresponding to a noise-equivalent detection limit of 20 ppm at 296 K and 76 ppm at 906 K at 50 kHz. This substantial gain in signal, relative to conventional single-pass absorption, will enable ultra-sensitive species detection in shock tube kinetics studies, particularly useful for measurements of minor species and for studies of dilute reactive systems.

© 2014 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(300.1030) Spectroscopy : Absorption
(280.1545) Remote sensing and sensors : Chemical analysis

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: February 19, 2014
Revised Manuscript: April 1, 2014
Manuscript Accepted: April 2, 2014
Published: April 9, 2014

Kai Sun, Shengkai Wang, Ritobrata Sur, Xing Chao, Jay B. Jeffries, and Ronald K. Hanson, "Sensitive and rapid laser diagnostic for shock tube kinetics studies using cavity-enhanced absorption spectroscopy," Opt. Express 22, 9291-9300 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. G. Gaydon and I. R. Hurle, The Shock Tube in High-Temperature Chemical Physics (Reinhold, 1963).
  2. D. F. Davidson, R. K. Hanson, “Recent advances in shock tube/laser diagnostic methods for improved chemical kinetics measurements,” Shock Waves 19(4), 271–283 (2009). [CrossRef]
  3. R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst. 33(1), 1–40 (2011). [CrossRef]
  4. R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity-enhanced absorption and cavity-enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69(11), 3763–3769 (1998). [CrossRef]
  5. G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000). [CrossRef]
  6. M. Mazurenka, A. J. Orr-Ewing, R. R. Peverall, G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Ann. Rep. Prog. Chem., Sec. C: Phys. Chem. 101, 100–142 (2005).
  7. J. H. van Helden, R. Peverall, and G. A. D. Ritchie, “Cavity enhanced techniques using continuous wave lasers,” in Cavity Ring-Down Spectroscopy: Techniques and Applications, G. Berden and R. Engeln, eds. (Wiley-Blackwell, 2009), pp. 27–56.
  8. A. O’Keefe, J. J. Scherer, J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307, 349–353(1999).
  9. J. B. Paul, L. Lapson, J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40(27), 4904–4910 (2001). [CrossRef] [PubMed]
  10. E. J. Moyer, D. S. Sayres, D. G. Engel, J. M. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008). [CrossRef]
  11. J. T. Herbon, R. K. Hanson, D. M. Golden, C. T. Bowman, “A shock tube study of the enthalpy of formation of OH,” Proc. Combust. Inst. 29(1), 1201–1208 (2002). [CrossRef]
  12. M. A. Oehlschlaeger, D. F. Davidson, R. K. Hanson, “High-temperature UV absorption of methyl radicals behind shock waves,” J. Quant. Spectrosc. Radiat. Transf. 92(4), 393–402 (2005). [CrossRef]
  13. R. K. Hanson, “Shock tube spectroscopy: advanced instrumentation with a tunable diode laser,” Appl. Opt. 16(6), 1479–1481 (1977). [CrossRef] [PubMed]
  14. W. Ren, A. Farooq, D. F. Davidson, R. K. Hanson, “CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm,” Appl. Phys. B 107(3), 849–860 (2012). [CrossRef]
  15. J. U. White, “Long optical paths of large aperture,” J. Opt. Soc. Am. 32(5), 285 (1942). [CrossRef]
  16. D. R. Herriott, H. Kogelnik, R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3(4), 523–526 (1964). [CrossRef]
  17. M. C. Su, S. S. Kumaran, K. P. Lim, J. V. Michael, “Multipass optical detection in reflected shock waves: Application to OH radicals,” Rev. Sci. Instrum. 66(9), 4649 (1995). [CrossRef]
  18. L. N. Krasnoperov, J. V. Michael, “Shock tube studies using a novel multipass absorption cell: rate constant results for OH + H2 and OH + C2H6,” J. Phys. Chem. A 108(26), 5643–5648 (2004). [CrossRef]
  19. G. S. Engel, W. S. Drisdell, F. N. Keutsch, E. J. Moyer, J. G. Anderson, “Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57 microm: New sensitivity limits for absorption measurements in passive optical cavities,” Appl. Opt. 45(36), 9221–9229 (2006). [CrossRef] [PubMed]
  20. D. Baer, J. Paul, M. Gupta, A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated cavity output spectroscopy,” Appl. Phys. B 75(2-3), 261–265 (2002). [CrossRef]
  21. J. B. Paul, J. J. Scherer, A. O’Keefe, L. Lapson, J. R. Anderson, C. F. Gmachl, F. Capasso, A. Y. Cho, “Infrared cavity ringdown and integrated cavity output spectroscopy for trace species monitoring,” Proc. SPIE DOI: (2002). [CrossRef]
  22. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013). [CrossRef]
  23. Y. Hidaka, K. Hattori, T. Okuno, K. Inami, T. Abe, T. Koike, “Shock tube and modeling study of acetylene pyrolysis and oxidation,” Combust. Flame 107(4), 401–417 (1996). [CrossRef]
  24. S. Wang, D. F. Davidson, R. K. Hanson, “High temperature measurements for the rate constants of C1-C4 aldehydes with OH in a shock tube,” Proc. Combust. Inst.in press.
  25. B. Ouyang, R. L. Jones, “Understanding the sensitivity of cavity-enhanced absorption spectroscopy: pathlength enhancement versus noise suppression,” Appl. Phys. B 109(4), 581–591 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited