OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 9324–9333

Retroreflector for GRACE follow-on: Vertex vs. point of minimal coupling

Daniel Schütze, Vitali Müller, Gunnar Stede, Benjamin S. Sheard, Gerhard Heinzel, Karsten Danzmann, Andrew J. Sutton, and Daniel A. Shaddock  »View Author Affiliations


Optics Express, Vol. 22, Issue 8, pp. 9324-9333 (2014)
http://dx.doi.org/10.1364/OE.22.009324


View Full Text Article

Enhanced HTML    Acrobat PDF (2162 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The GRACE Follow-On mission will monitor fluctuations in Earth’s geoid using, for the first time, a Laser Ranging Interferometer to measure intersatellite distance changes. We have investigated the coupling between spacecraft rotation and the intersatellite range measurement that is incurred due to manufacturing and assembly tolerances of the Triple Mirror Assembly (TMA), a precision retroreflector to ensure alignment between in- and outgoing laser beams. The three TMA mirror planes intersect in a virtual vertex to which satellite displacements are referenced. TMA manufacturing tolerances degrade this ideal vertex, however, a Point of Minimal Coupling (PMC) between spacecraft rotation and displacement exists. This paper presents the experimental location of the PMC under pitch and yaw rotations for a prototype TMA. Rotations are performed using a hexapod, while displacements are monitored with heterodyne laser interferometry to verify the PMC position. Additionally, the vertex of the three TMA mirror planes is measured using a Coordinate Measuring Machine and compared to the PMC position. In the pitch and yaw axes, the biggest deviation between TMA vertex and PMC was 50 ± 64 μm. Thus, within the measurement uncertainties, no difference between TMA vertex and PMC could be observed. This is a key piece of information for integration of the TMA into the spacecraft: It is sufficient to use the readily-available TMA vertex location to ensure minimal rotation-to-displacement coupling during the mission.

© 2014 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.6085) Instrumentation, measurement, and metrology : Space instrumentation

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: January 14, 2014
Revised Manuscript: March 3, 2014
Manuscript Accepted: March 4, 2014
Published: April 10, 2014

Citation
Daniel Schütze, Vitali Müller, Gunnar Stede, Benjamin S. Sheard, Gerhard Heinzel, Karsten Danzmann, Andrew J. Sutton, and Daniel A. Shaddock, "Retroreflector for GRACE follow-on: Vertex vs. point of minimal coupling," Opt. Express 22, 9324-9333 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-8-9324


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. D. Tapley, S. Bettadpur, M. Cheng, D. Hudson, G. Kruizinga, “Early results from the gravity recovery and climate experiment,” in Astrodynamics Specialist Conference, J. D. Lafontaine, J. DeLafontaine, J. Treder, M. T. Soyka, J. A. Sims, eds. (Astrodynamics, 2003), 1899–1911.
  2. B. D. Tapley, S. Bettadpur, J. C. Ries, P. F. Thompson, M. M. Watkins, “GRACE measurements of mass variability in the earth system,” Science 305, 503–505 (2004). [CrossRef] [PubMed]
  3. B. D. Tapley, S. Bettadpur, M. Watkins, C. Reigber, “The gravity recovery and climate experiment: Mission overview and early results,” Geophy. Res. Lett. 31,L09607 (2004). [CrossRef]
  4. B. D. Tapley, D. P. Chambers, S. Bettadpur, J. C. Ries, “Large scale ocean circulation from the GRACE GGM01 Geoid,” Geophys. Res. Lett. 30,2163 (2003). [CrossRef]
  5. R. Schmidt, F. Flechtner, U. Meyer, K. H. Neumayer, Ch. Dahle, R. Koenig, J. Kusche, “Hydrological signals observed by the GRACE satellites,” Surv. Geophys. 29, 319–334 (2008). [CrossRef]
  6. B. Wouters, D. Chambers, E. J. O. Schrama, “GRACE observes small-scale mass loss in Greenland,” Geophys. Res. Lett. 35,L20501 (2008). [CrossRef]
  7. V. M. Tiwari, J. Wahr, S. Swenson, “Dwindling groundwater resources in northern India, from satellite gravity observations,” Geophys. Res. Lett. 36,L18401 (2009). [CrossRef]
  8. C. Dunn, W. Bertiger, Y. Bar-Sever, S. Desai, B. Haines, D. Kuang, G. Franklin, I. Harris, G. Kruizinga, T. Meehan, S. Nandi, D. Nguyen, T. Rogstad, J. B. Thomas, J. Tien, L. Romans, M. Watkins, S. C. Wu, S. Bettadpur, J. Kim, “Instrument of GRACE: GPS augments gravity measurements,” GPS World 14, 16–28 (2003).
  9. P. Touboul, E. Willemenot, B. Foulon, V. Josselin, “Accelerometers for CHAMP, GRACE and GOCE space missions: Synergy and evolution,” B. Geofis. Teor. Appl. 40, 321–327 (1999).
  10. M. van den Broeke, J. Bamber, J. Ettema, E. Rignot, E. Schrama, W. J. van de Berg, E. van Meijgaard, I. Velicogna, B. Wouters, “Partitioning recent Greenland mass loss,” Science 326, 984–986 (2009). [CrossRef] [PubMed]
  11. B. S. Sheard, G. Heinzel, K. Danzmann, D. A. Shaddock, W. M. Klipstein, W. M. Folkner, “Intersatellite laser ranging instrument for the GRACE follow-on mission,” J. Geodesy 86, 1083–1095 (2012). [CrossRef]
  12. G. Heinzel, A. Rüdiger, R. Schilling, K. Strain, W. Winkler, J. Mizuno, K. Danzmann, “Automatic beam alignment in the Garching 30-m prototype of a laser-interferometric gravitational wave detector,” Opt. Commun. 160, 321–334 (1999). [CrossRef]
  13. E. Morrison, B. J. Meers, D. I. Robertson, H. Ward, “Automatic alignment of optical interferometers,” Appl. Optics 33, 5041–5049 (1994). [CrossRef]
  14. D. Z. Anderson, “Alignment of resonant optical cavities,” Appl. Optics 23, 2944–2949 (1984). [CrossRef]
  15. P. R. Yoder, “Study of light deviation errors in triple mirrors and tetrahedral prisms,” J. Opt. Soc. Am. 48, 496–499 (1958). [CrossRef]
  16. R. L. Ward, Australian National University Barry Dr, Acton ACT 0200, Australia R. Fleddermann, M. Elliot, S. Francis, C. Mow-Lowry, D. Wuchenich, F. Gilles, M. Herding, K. Nicklaus, J. Brown, J. Burke, S. Dligatch, D. Farrant, K. Green, J. Seckold, M. Blundell, R. Brister, C. Smith, K. Danzmann, G. Heinzel, D. Schütze, B. S. Sheard, B. Klipstein, D. E. McClelland, D. A. Shaddock, “The design and construction of a prototype lateral-transfer retroreflector for inter-satellite laser ranging,” Class. Quant. Grav. (submitted).
  17. R. Fleddermann, Australian National University, Barry Dr, Acton ACT 0200, Australia, R. L. Ward, M. Elliot, D. Wuchenich, F. Gilles, M. Herding, K. Nicklaus, J. Brown, J. Burke, S. Dligatch, D. Farrant, K. Green, J. Seckold, M. Blundell, R. Brister, C. Smith, B. S. Sheard, G. Heinzel, K. Danzmann, B. Klipstein, D. E. Mc-Clelland, D. A. Shaddock, are preparing a manuscript to be called “Testing the GRACE FO Triple Mirror Assembly.”
  18. D. Schütze, D. Farrant, D. A. Shaddock, B. S. Sheard, G. Heinzel, K. Danzmann, “Measuring coalignment of retroreflectors with large lateral incoming-outgoing beam offset,” Rev. Sci. Instrum. (accepted for publication).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited