OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 9334–9343

Efficient design of polarization insensitive polymer optical waveguide devices considering stress-induced effects

Md. Faruque Hossain, Hau Ping Chan, and Abbas Z. Kouzani  »View Author Affiliations


Optics Express, Vol. 22, Issue 8, pp. 9334-9343 (2014)
http://dx.doi.org/10.1364/OE.22.009334


View Full Text Article

Enhanced HTML    Acrobat PDF (1506 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an approach for the efficient design of polarization insensitive polymeric optical waveguide devices considering stress-induced effects. In this approach, the stresses induced in the waveguide during the fabrication process are estimated first using a more realistic model in the finite element analysis. Then we determine the perturbations in the material refractive indices caused by the stress-optic effect. It is observed that the stresses cause non-uniform optical anisotropy in the waveguide materials, which is then incorporated in the modal analysis considering a multilayer structure of waveguide. The approach is exploited in the design of a Bragg grating on strip waveguide. Excellent agreement between calculated and published experimental results confirms the feasibility of our approach in the accurate design of polarization insensitive polymer waveguide devices.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(310.5448) Thin films : Polarization, other optical properties
(130.5440) Integrated optics : Polarization-selective devices
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: January 8, 2014
Revised Manuscript: March 9, 2014
Manuscript Accepted: April 2, 2014
Published: April 10, 2014

Citation
Md. Faruque Hossain, Hau Ping Chan, and Abbas Z. Kouzani, "Efficient design of polarization insensitive polymer optical waveguide devices considering stress-induced effects," Opt. Express 22, 9334-9343 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-8-9334


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Ma, A. K.-Y. Jen, L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater. 14(19), 1339–1365 (2002). [CrossRef]
  2. L. Eldada, L. W. Shacklette, “Advances in polymer integeated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000). [CrossRef]
  3. Y. Zhang, C. Yang, S. Li, H. Yan, J. Yin, C. Gu, G. Jin, “Complete polarization controller based on magneto-optic crystals and fixed quarter wave plates,” Opt. Express 14(8), 3484–3490 (2006). [CrossRef] [PubMed]
  4. W. P. Wong, K. S. Chiang; “Design of polarization-insensitive Bragg Gratings in zero birefringence ridge waveguide,” IEEE J. Quantum Electron. 37(9), 1138–1145 (2001). [CrossRef]
  5. M. Huang, “Thermal Stresses in optical waveguides,” Opt. Lett. 28(23), 2327–2329 (2003). [CrossRef] [PubMed]
  6. L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, P. V. S. Marques, “Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica,” Opt. Express 20(22), 24103–24114 (2012). [CrossRef] [PubMed]
  7. S. Y. Cheng, K. S. Chiang, H. P. Chan, “Polarization dependence in polymer waveguide directional couplers,” IEEE Photon. Technol. Lett. 17(7), 1465–1467 (2005). [CrossRef]
  8. J.-M. Lee, S. Park, M. H. Lee, J. T. Ahn, J. J. Ju, K. H. Kim, “Simple method to adjust polarization dependence in polymeric arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 15(7), 927–929 (2003). [CrossRef]
  9. S. Y. Cheng, K. S. Chiang, H. P. Chan, “Polarization-insensitive polymer waveguide Bragg gratings,” Microw. Opt. Technol. Lett. 48(2), 334–338 (2006). [CrossRef]
  10. W. N. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, N. G. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides,” J. Lightwave Technol. 23(3), 1308–1318 (2005). [CrossRef]
  11. P. Dumais, “Modal birefringence analysis of strained buried-core waveguides,” J. Lightwave Technol. 30(6), 906–912 (2012). [CrossRef]
  12. N. Belhadj, Y. Park, S. Larochelle, K. Dossou, J. Azaña, “UV-induced modification of stress distribution in optical fibers and its contribution to Bragg grating birefringence,” Opt. Express 16(12), 8727–8741 (2008). [CrossRef] [PubMed]
  13. K. Saitoh, M. Koshiba, Y. Tsuji, “Stress analysis method for elastically anisotropic material based optical waveguides and its application to strain-induced optical waveguides,” J. Lightwave Technol. 17(2), 255–259 (1999). [CrossRef]
  14. H. P. Schriemer, M. Cada, “Modal birefringence and power density distribution in strained buried-core square waveguides,” IEEE J. Quantum Electron. 40(8), 1131–1139 (2004). [CrossRef]
  15. M. M. Milosevic, P. S. Matavulj, B. D. Timotijevic, G. T. Reed, G. Z. Mashanovich, “Design rules for single-mode and polarization-independent silicon-on-insulator rib waveguides using stress engineering,” J. Lightwave Technol. 26(13), 1840–1846 (2008). [CrossRef]
  16. M. F. Hossain, H. P. Chan, M. A. Uddin, R. K. Y. Li, “Stress-induced birefringence characteristics of polymer optical rib waveguides,” J. Lightwave Technol. 27(21), 4678–4685 (2009). [CrossRef]
  17. S.-K. Kim, K. Geary, W. Yuan, H. R. Fetterman, D.-G. Lee, C. Zhang, C. Wang, W. H. Steier, G.-C. Park, S.-J. Gang, I. Oh, “Stress-induced polymer waveguides operating at both 1.31 and 1.55 µm wavelengths,” Electron. Lett. 40(14), 866–868 (2004). [CrossRef]
  18. Y. Lin, W. Liu, F. G. Shi, “Adhesive joint design for minimizing fiber alignment shift during UV curing,” IEEE Trans. Adv. Packag. 29(3), 520–524 (2006). [CrossRef]
  19. M. F. Hossain, H. P. Chan, M. A. Uddin, and R. K. Y. Li, “Efficient design of polarization independent polymer optical waveguide devices,” in Proceedings of The 14th OptoElectronics and Communications Conference (OECC) (Hong Kong 2009), paper WA5. [CrossRef]
  20. M. Lohmeyer, “Vectorial wave-matching-method mode analysis of integrated optical waveguides,” Opt. Quantum Electron. 30(5/6), 385–396 (1998). [CrossRef]
  21. V. Antonucci, A. Cusano, M. Giordano, J. Nasser, L. Nicolais, “Cure-induced residual strain build-up in a thermoset resin,” Composites: Part A 37(4), 592–601 (2006). [CrossRef]
  22. M. A. Uddin, H. P. Chan, C. K. Chow, Y. C. Chan, “Effect of spin coating on the curing rate of epoxy adhesive for the fabrication of a polymer optical waveguide,” J. Electron. Mater. 33(3), 224–228 (2004). [CrossRef]
  23. K. C. Chan, M. Teo, Z. W. Zhong, “Characterization of low-k benzocyclobutene dielectric thin film,” Microelectron. Int. 20(3), 11–22 (2003). [CrossRef]
  24. J.-H. Zhao, T. Ryan, P. S. Ho, A. J. McKerrow, W.-Y. Shih, “On-wafer characterization of thermomechanical properties of dielectric thin films by a bending beam technique,” J. Appl. Phys. 88(5), 3029–3038 (2000). [CrossRef]
  25. Benzocyclobutene (BCB) thermal and mechanical properties [Online]. Available: http://www.dow.com/cyclotene/solution/thermprop.htm
  26. T. C. Hodge, S. A. B. Allen, P. A. Kohl, “In situ measurement of the thermal expansion behavior of benzocyclobutene films,” J. Polymer Science part B: Polymer Physics 37(4), 311–321 (1999). [CrossRef]
  27. M. F. Hossain, H. P. Chan, M. A. Uddin, “Simultaneous measurement of thermo-optic and stress-optic coefficients of polymer thin films using prism coupler technique,” Appl. Opt. 49(3), 403–408 (2010). [CrossRef] [PubMed]
  28. K. Fischer, J. Müller, R. Hoffmann, F. Wasse, D. Salle, “Elastooptical properties of SiON layers in an integrated optical interferometer used as a pressure sensor,” J. Lightwave Technol. 12(1), 163–169 (1994). [CrossRef]
  29. Y.-L. Shen, S. Suresh, I. A. Blech, “Stresses, curvatures, and shape changes arising from patterned lines on silicon wafers,” J. Appl. Phys. 80(3), 1388–1398 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited