OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 9368–9379

Laser Doppler holographic microscopy in transmission: application to fish embryo imaging

Nicolas Verrier, Daniel Alexandre, and Michel Gross  »View Author Affiliations


Optics Express, Vol. 22, Issue 8, pp. 9368-9379 (2014)
http://dx.doi.org/10.1364/OE.22.009368


View Full Text Article

Enhanced HTML    Acrobat PDF (1860 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have extended Laser Doppler holographic microscopy to transmission geometry. The technique is validated with living fish embryos imaged by a modified upright bio-microcope. By varying the frequency of the holographic reference beam, and the combination of frames used to calculate the hologram, multimodal imaging has been performed. Doppler images of the blood vessels for different Doppler shifts, images where the flow direction is coded in RGB colors or movies showing blood cells individual motion have been obtained as well. The ability to select the Fourier space zone that is used to calculate the signal, makes the method quantitative.

© 2014 Optical Society of America

OCIS Codes
(090.2880) Holography : Holographic interferometry
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry
(180.3170) Microscopy : Interference microscopy
(290.5850) Scattering : Scattering, particles
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(090.1995) Holography : Digital holography

ToC Category:
Microscopy

History
Original Manuscript: February 19, 2014
Revised Manuscript: March 28, 2014
Manuscript Accepted: March 28, 2014
Published: April 10, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Nicolas Verrier, Daniel Alexandre, and Michel Gross, "Laser Doppler holographic microscopy in transmission: application to fish embryo imaging," Opt. Express 22, 9368-9379 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-8-9368


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Friedman, S. Krupsky, A. Lane, S. Oak, E. Friedman, K. Egan, E. Gragoudas, “Ocular blood flow velocity in age-related macular degeneration,” Ophthalmology 102, 640–646 (1995). [CrossRef] [PubMed]
  2. M. P. Pase, N. A. Grima, C. K. Stough, A. Scholey, A. Pipingas, “Cardiovascular disease risk and cerebral blood flow velocity,” Stroke 43, 2803–2805 (2012). [CrossRef] [PubMed]
  3. J. Kur, E. A. Newman, T. Chan-Ling, “Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease,” Prog. Retin. Eye Res. 31, 377–406 (2012). [CrossRef] [PubMed]
  4. O. Sakurada, C. Kennedy, J. Jehle, J. Brown, G. L. Carbin, L. Sokoloff, “Measurement of local cerebral blood flow with iodo [14c] antipyrine,” Am. J. Physiol.-Heart C. 234, H59–H66 (1978).
  5. I. Kanno, H. Iida, S. Miura, M. Murakami, K. Takahashi, H. Sasaki, A. Inugami, F. Shishido, K. Uemura, “A system for cerebral blood flow measurement using an h215o autoradiographic method and positron emission tomography,” J Cerebr. Blood F. Met. 7, 143–153 (1987). [CrossRef]
  6. Y. Yeh, H. Cummins, “Localized fluid flow measurements with an he-ne laser spectrometer,” Appl. Phys. Lett. 4, 176–178 (1964). [CrossRef]
  7. J. D. Briers, “Laser doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22, R35–R66 (2001). [CrossRef]
  8. J. D. Briers, S. Webster, “Laser speckle contrast analysis (lasca): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996). [CrossRef] [PubMed]
  9. A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng. 40, 367–377 (2012). [CrossRef]
  10. D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013). [CrossRef] [PubMed]
  11. S. Yuan, A. Devor, D. A. Boas, A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt. 44, 1823–1830 (2005). [CrossRef] [PubMed]
  12. Y. Zeng, M. Wang, G. Feng, X. Liang, G. Yang, “Laser speckle imaging based on intensity fluctuation modulation,” Opt. Lett. 38, 1313–1315 (2013). [CrossRef] [PubMed]
  13. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948). [CrossRef] [PubMed]
  14. D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. A 197, 454–487 (1949). [CrossRef]
  15. E. N. Leith, J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. A 52, 1123–1128 (1962). [CrossRef]
  16. U. Schnars, W. Jüptner, “Direct recording of holograms by a ccd target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994). [CrossRef] [PubMed]
  17. A. Lozano, J. Kostas, J. Soria, “Use of holography in particle image velocimetry measurements of a swirling flow,” Exp. Fluids 27, 251–261 (1999). [CrossRef]
  18. Y. Pu, H. Meng, “Four-dimensional dynamic flow measurement by holographic particle image velocimetry,” Appl. Opt. 44, 7697–7708 (2005). [CrossRef] [PubMed]
  19. J.-M. Desse, P. Picart, P. Tankam, “Digital three-color holographic interferometry for flow analysis,” Opt. Express 16, 5471–5480 (2008). [CrossRef] [PubMed]
  20. N. Verrier, S. Coëtmellec, M. Brunel, D. Lebrun, “Digital in-line holography in thick optical systems: application to visualization in pipes,” Appl. Opt. 47, 4147–4157 (2008). [CrossRef] [PubMed]
  21. N. Verrier, C. Remacha, M. Brunel, D. Lebrun, S. Coëtmellec, “Micropipe flow visualization using digital in-line holographic microscopy,” Opt. Express 18, 7807–7819 (2010). [CrossRef] [PubMed]
  22. F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. Mitchell, P. Marquet, B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14, 7005–7013 (2006). [CrossRef] [PubMed]
  23. W. Xu, M. Jericho, I. Meinertzhagen, H. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001). [CrossRef] [PubMed]
  24. B. Kemper, G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008). [CrossRef] [PubMed]
  25. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1, 018005 (2010).
  26. K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013). [CrossRef] [PubMed]
  27. P. Picart, J. Leval, D. Mounier, S. Gougeon, “Some opportunities for vibration analysis with time averaging in digital fresnel holography,” Appl. Opt. 44, 337–343 (2005). [CrossRef] [PubMed]
  28. J. Leval, P. Picart, J. P. Boileau, J. C. Pascal, “Full-field vibrometry with digital fresnel holography,” Appl. Opt. 44, 5763–5772 (2005). [CrossRef] [PubMed]
  29. A. Asundi, V. R. Singh et al., “Time-averaged in-line digital holographic interferometry for vibration analysis,” Appl. Opt. 45, 2391–2395 (2006). [CrossRef] [PubMed]
  30. F. Le Clerc, L. Collot, M. Gross, “Numerical heterodyne holography with two-dimensional photodetector arrays,” Opt. Lett. 25, 716–718 (2000). [CrossRef]
  31. M. Atlan, M. Gross, E. Absil, “Accurate phase-shifting digital interferometry,” Opt. Lett. 32, 1456–1458 (2007). [CrossRef] [PubMed]
  32. F. Verpillat, F. Joud, M. Atlan, M. Gross, “Digital holography at shot noise level,” J. DisplayTechnol. 6, 455–464 (2010).
  33. M. Lesaffre, N. Verrier, M. Gross, “Noise and signal scaling factors in digital holography in weak illumination: relationship with shot noise,” Appl. Opt. 52, A81–A91 (2013). [CrossRef] [PubMed]
  34. M. Atlan, M. Gross, “Laser doppler imaging, revisited,” Rev. of Sci. Instrum. 77, 116103 (2006). [CrossRef]
  35. M. Atlan, M. Gross, J. Leng, “Laser doppler imaging of microflow,” J. Europ. Opt. Soc. Rapid pub. 1, 06025 (2006). [CrossRef]
  36. F. Verpillat, F. Joud, M. Atlan, M. Gross, “Imaging velocities of a vibrating object by stroboscopic sideband holography,” Opt. Express 20, 22860–22871 (2012). [CrossRef] [PubMed]
  37. N. Verrier, M. Atlan, “Absolute measurement of small-amplitude vibrations by time-averaged heterodyne holography with a dual local oscillator,” Opt. Lett. 38, 739–741 (2013). [CrossRef] [PubMed]
  38. N. Verrier, M. Gross, M. Atlan, “Phase-resolved heterodyne holographic vibrometry with a strobe local oscillator,” Opt. Lett. 38, 377–379 (2013). [CrossRef] [PubMed]
  39. M. Atlan, M. Gross, B. C. Forget, T. Vitalis, A. Rancillac, A. K. Dunn, “Frequency-domain wide-field laser doppler in vivo imaging,” Opt. Lett. 31, 2762–2764 (2006). [CrossRef] [PubMed]
  40. M. Atlan, B. C. Forget, A. C. Boccara, T. Vitalis, A. Rancillac, A. K. Dunn, M. Gross, “Cortical blood flow assessment with frequency-domain laser doppler microscopy,” J. Biomed. Opt. 12, 024019 (2007). [CrossRef] [PubMed]
  41. M. Simonutti, M. Paques, J.-A. Sahel, M. Gross, B. Samson, C. Magnain, M. Atlan, “Holographic laser doppler ophthalmoscopy,” Opt. Lett. 35, 1941–1943 (2010). [CrossRef] [PubMed]
  42. C. Fang-Yen, S. Oh, Y. Park, W. Choi, S. Song, H. S. Seung, R. R. Dasari, M. S. Feld, “Imaging voltage-dependent cell motions with heterodyne mach-zehnder phase microscopy,” Opt. Lett. 32, 1572–1574 (2007). [CrossRef] [PubMed]
  43. H. Iwai, T. Yamauchi, M. Miwa, Y. Yamashita, “Doppler-spectrally encoded imaging of translational objects,” Opt. Commmun. 319, 159–169 (2014). [CrossRef]
  44. S. Joseph, J.-M. Gineste, M. Whelan, D. Newport, “A heterodyne mach-zehnder interferometer employing static and dynamic phase demodulation techniques for live-cell imaging,” Proc. SPIE 7554, 75540P (2010). [CrossRef]
  45. M. Westerfield, The Zebrafish Book: a Guide for the Laboratory use of Zebrafish (Danio rerio) (Institute of Neuroscience. University of Oregon, 1995).
  46. S. Isogai, M. Horiguchi, B. M. Weinstein, “The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development,” Dev. Biol. 230, 278–301 (2001). [CrossRef] [PubMed]
  47. M. Atlan, M. Gross, B. C. Forget, T. Vitalis, A. Rancillac, A. K. Dunn, “Frequency-domain wide-field laser doppler in vivo imaging,” Opt. Lett. 31, 2762–2764 (2006). [CrossRef] [PubMed]
  48. M. Atlan, B. C. Forget, A. C. Boccara, T. Vitalis, A. Rancillac, A. K. Dunn, M. Gross, “Cortical blood flow assessment with frequency-domain laser doppler microscopy,” J. Biomed. Opt. 12, 024019 (2007). [CrossRef] [PubMed]
  49. M. Atlan, M. Gross, T. Vitalis, A. Rancillac, J. Rossier, A. Boccara, “High-speed wave-mixing laser doppler imaging in vivo,” Opt. Lett. 33, 842–844 (2008). [CrossRef] [PubMed]
  50. N. Warnasooriya, F. Joud, P. Bun, G. Tessier, M. Coppey-Moisan, P. Desbiolles, M. Atlan, M. Abboud, M. Gross, “Imaging gold nanoparticles in living cell environments using heterodyne digital holographic microscopy.” Opt. Express 18, 3264–3273 (2010). [CrossRef] [PubMed]
  51. F. Verpillat, F. Joud, P. Desbiolles, M. Gross, “Dark-field digital holographic microscopy for 3d-tracking of gold nanoparticles,” Opt. Express 19, 26044–26055 (2011). [CrossRef]
  52. E. Cuche, P. Marquet, C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000). [CrossRef]
  53. J. Gao, J. A. Lyon, D. P. Szeto, J. Chen, “In vivo imaging and quantitative analysis of zebrafish embryos by digital holographic microscopy,” Biomed. Opt. Express 3, 2623–2635 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (1539 KB)     
» Media 2: AVI (1367 KB)     
» Media 3: AVI (7296 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited