OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 9380–9394

Optical phase imaging using a synthetic aperture phase retrieval technique

Dennis J. Lee and Andrew M. Weiner  »View Author Affiliations

Optics Express, Vol. 22, Issue 8, pp. 9380-9394 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (9151 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical phase imaging enables visualization of transparent samples, numerical refocusing, and other computational processing. Typically phase is measured quantitatively using interferometric techniques such as digital holography. Researchers have demonstrated image enhancement by synthetic aperture imaging based on digital holography. In this work we introduce a novel imaging technique that implements synthetic aperture imaging using phase retrieval, a non-interferometric technique. Unlike digital holography, phase retrieval obviates the need for a reference arm and provides a more compact, less expensive, and more stable experimental setup. We call this technique synthetic aperture phase retrieval.

© 2014 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(170.0110) Medical optics and biotechnology : Imaging systems
(170.0180) Medical optics and biotechnology : Microscopy
(110.1758) Imaging systems : Computational imaging

ToC Category:
Imaging Systems

Original Manuscript: February 20, 2014
Revised Manuscript: April 3, 2014
Manuscript Accepted: April 4, 2014
Published: April 10, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Dennis J. Lee and Andrew M. Weiner, "Optical phase imaging using a synthetic aperture phase retrieval technique," Opt. Express 22, 9380-9394 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. G. Davies, M. H. F. Wilkins, “Interference microscopy and mass determination,” Nature 169, 541 (1952). [CrossRef] [PubMed]
  2. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361–9373 (2005). [CrossRef] [PubMed]
  3. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005). [CrossRef] [PubMed]
  4. G. Popescu, T. Ikeda, R. R. Dasari, M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777(2006). [CrossRef] [PubMed]
  5. A. Barty, K. A. Nugent, D. Paganin, A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998). [CrossRef]
  6. M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, K. Kim, R. R. Dasari, M. S. Feld, W. Choi, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17(2), 026003 (2012). [CrossRef] [PubMed]
  7. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  8. U. Schnars, W. Juptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994). [CrossRef] [PubMed]
  9. E. Cuche, P. Marquet, C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999). [CrossRef]
  10. I. Yamaguchi, T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef] [PubMed]
  11. I. Yamaguchi, J. Kato, S. Ohta, J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40(34) 6177–6186 (2001). [CrossRef]
  12. P. Gao, G. Pedrini, W. Osten, “Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy,” Opt. Lett. 38, 1328–1330 (2013). [CrossRef] [PubMed]
  13. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007). [CrossRef] [PubMed]
  14. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. Dasari, M. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009). [CrossRef] [PubMed]
  15. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. A 73(11), 1434–1441 (1983). [CrossRef]
  16. N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49(1), 6–10 (1984). [CrossRef]
  17. L. Allen, M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199, 65–75 (2001). [CrossRef]
  18. L. Waller, L. Tian, G. Barbastathis, “Transport of intensity phase-amplitude imaging with higher-order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010). [CrossRef] [PubMed]
  19. L. Waller, S. S. Kou, C. J. R. Sheppard, G. Barbastathis, “Phase from chromatic aberrations,” Opt. Express 18(22), 22817–22825 (2010). [CrossRef] [PubMed]
  20. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 227–246 (1972).
  21. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef] [PubMed]
  22. G. Pedrini, W. Osten, H. Tiziani, “Wave-front reconstruction from a sequence of interferograms recorded at different planes,” Opt. Lett. 30(8), 833–835(2005). [CrossRef] [PubMed]
  23. P. Almoro, G. Pedrini, W. Osten, “Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field,” Appl. Opt. 45(34), 8596–8605 (2006). [CrossRef] [PubMed]
  24. Y. Zhang, G. Pedrini, W. Osten, H. Tiziani, “Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm,” Opt. Express 11, 3234–3241 (2003). [CrossRef] [PubMed]
  25. P. Almoro, S. Hanson, “Wavefront sensing using speckles with fringe compensation,” Opt. Express 16, 7608–7618 (2008). [CrossRef] [PubMed]
  26. A. Anand, V. K. Chhaniwal, P. Almoro, G. Pedrini, W. Osten, “Shape and deformation measurements of 3D objects using volume speckle field and phase retrieval,” Opt. Lett. 34(10), 1522–1524 (2009). [CrossRef] [PubMed]
  27. D. Axelrod., “Selective imaging of surface fluorescence with very high aperture microscope objectives,” J. Biomed. Opt. 6, 6–13 (2001). [CrossRef] [PubMed]
  28. Z. Jingshan, J. Dauwels, M. Vazquez, L. Waller, “Sparse ACEKF for phase reconstruction,” Opt. Express 21, 18125–18137 (2013). [CrossRef] [PubMed]
  29. R. D. Niederriter, A. M. Watson, R. N. Zahreddine, C. J. Cogswell, R. H. Cormack, V. M. Bright, J. T. Gopinath, “Electrowetting lenses for compensating phase and curvature distortion in arrayed laser systems,” Applied Optics 52, 3172 (2013). [CrossRef] [PubMed]
  30. M. Herraez, D. Burton, M. Lalor, M. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path,” Appl. Opt. 41, 7437–7444 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited