OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 9395–9403

Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology

Jing Wang, Zhen Sheng, Le Li, Albert Pang, Aimin Wu, Wei Li, Xi Wang, Shichang Zou, Minghao Qi, and Fuwan Gan  »View Author Affiliations


Optics Express, Vol. 22, Issue 8, pp. 9395-9403 (2014)
http://dx.doi.org/10.1364/OE.22.009395


View Full Text Article

Enhanced HTML    Acrobat PDF (6390 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Low-loss and low-crosstalk 8 × 8 arrayed waveguide grating (AWG) routers based on silicon nanowire waveguides are reported. A comparative study of the measurement results of the 3.2 nm-channel-spacing AWGs with three different designs is performed to evaluate the effect of each optimal technique, showing that a comprehensive optimization technique is more effective to improve the device performance than a single optimization. Based on the comprehensive optimal design, we further design and experimentally demonstrate a new 8-channel 0.8 nm-channel-spacing silicon AWG router for dense wavelength division multiplexing (DWDM) application with 130 nm CMOS technology. The AWG router with a channel spacing of 3.2 nm (resp. 0.8 nm) exhibits low insertion loss of 2.32 dB (resp. 2.92 dB) and low crosstalk of −20.5~-24.5 dB (resp. −16.9~-17.8 dB). In addition, sophisticated measurements are presented including all-input transmission testing and high-speed WDM system demonstrations for these routers. The functionality of the Si nanowire AWG as a router is characterized and a good cyclic rotation property is demonstrated. Moreover, we test the optical eye diagrams and bit-error-rates (BER) of the de-multiplexed signal when the multi-wavelength high-speed signals are launched into the AWG routers in a system experiment. Clear optical eye diagrams and low power penalty from the system point of view are achieved thanks to the low crosstalk of the AWG devices.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

History
Original Manuscript: February 25, 2014
Revised Manuscript: March 23, 2014
Manuscript Accepted: April 4, 2014
Published: April 10, 2014

Citation
Jing Wang, Zhen Sheng, Le Li, Albert Pang, Aimin Wu, Wei Li, Xi Wang, Shichang Zou, Minghao Qi, and Fuwan Gan, "Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology," Opt. Express 22, 9395-9403 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-8-9395


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Smit, C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996). [CrossRef]
  2. M. Zirngibl, C. Dragone, C. Joyner, “Demonstration of a 15×15 arrayed waveguide multiplexer on InP,” IEEE Photon. Technol. Lett. 4(11), 1250–1253 (1992). [CrossRef]
  3. R. Adar, C. Henry, C. Dragone, R. Kistler, M. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightwave Technol. 11(2), 212–219 (1993). [CrossRef]
  4. B. Yang, Y. P. Zhu, Y. Q. Jiao, L. Yang, Z. Sheng, S. L. He, D. X. Dai, “Compact arrayed waveguide grating devices based on small SU-8 strip waveguides,” J. Lightwave Technol. 29(13), 2009–2014 (2011). [CrossRef]
  5. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010). [CrossRef]
  6. L. Wang, W. Bogaerts, P. Dumon, S. K. Selvaraja, J. Teng, S. Pathak, X. Han, J. Wang, X. Jian, M. Zhao, R. Baets, G. Morthier, “Athermal arrayed waveguide gratings in silicon-on-insulator by overlaying a polymer cladding on narrowed arrayed waveguides,” Appl. Opt. 51(9), 1251–1256 (2012). [CrossRef] [PubMed]
  7. K. Okamoto, K. Ishida, “Fabrication of silicon reflection-type arrayed-waveguide gratings with distributed Bragg reflectors,” Opt. Lett. 38(18), 3530–3533 (2013). [CrossRef] [PubMed]
  8. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, W. Bogaerts, “Optimized silicon AWG with flattened spectral response using an MMI Aperture,” J. Lightwave Technol. 31(1), 87–93 (2013). [CrossRef]
  9. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact 16×16 channels routers based on silicon-on-insulator AWGs,” in 16th Annual symposium of the IEEE Photonics Benelux Chapter (IEEE Photonics Society, 2011), 101–104.
  10. D. J. Kim, J. M. Lee, J. H. Song, J. Pyo, G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20(19), 1615–1617 (2008). [CrossRef]
  11. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, W. Bogaerts, “Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” Opt. Express 20(26), B493–B500 (2012). [CrossRef] [PubMed]
  12. P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express 14(2), 664–669 (2006). [CrossRef] [PubMed]
  13. G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17(3), 571–580 (2011). [CrossRef]
  14. Z. Sheng, D. Dai, S. He, “Improve channel uniformity of an Si-nanowire AWG demultiplexer by using dual-tapered auxiliary waveguides,” J. Lightwave Technol. 25(10), 3001–3007 (2007). [CrossRef]
  15. F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching (2007), 67–68.
  16. J. Wang, C. Qiu, H. Li, W. Ling, L. Li, A. Pang, Z. Sheng, A. M. Wu, X. Wang, S. C. Zou, F. W. Gan, “Optimization and demonstration of a large-bandwidth carrier-depletion silicon optical modulator,” J. Lightwave Technol. 31(24), 4119–4125 (2013). [CrossRef]
  17. Y. Tachikawa, Y. Inoue, M. Ishii, T. Nozawa, “Arrayed-waveguide grating multiplexer with loop-back optical paths and its applications,” J. Lightwave Technol. 14(6), 977–984 (1996). [CrossRef]
  18. S. Suzuki, A. Himeno, M. Ishii, “Integrated multichannel optical wavelength selective switches incorporating an arrayed-waveguide grating multiplexer and thermooptic switches,” J. Lightwave Technol. 16(4), 650–655 (1998). [CrossRef]
  19. P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, D.-X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides,” Opt. Express 15(5), 2299–2306 (2007). [CrossRef] [PubMed]
  20. J. Zou, X. X. Jiang, X. Xia, T. T. Lang, J. J. He, “Ultra-compact birefringence-compensated arrayed waveguide grating triplexer based on silicon-on-insulator,” J. Lightwave Technol. 31(12), 1935–1940 (2013). [CrossRef]
  21. T. Hiraki, H. Nishi, T. Tsuchizawa, K. Rai, H. Fukuda, K. Takeda, Y. Ishikawa, K. Wada, K. Yamada, “Si-Ge-silica monolithic integration platform and its application to a 22-Gb/s×16-ch WDM receiver,” IEEE Photonics J. 5(4), 4500407 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited