OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 9471–9485

Robust source and mask optimization compensating for mask topography effects in computational lithography

Jia Li and Edmund Y. Lam  »View Author Affiliations


Optics Express, Vol. 22, Issue 8, pp. 9471-9485 (2014)
http://dx.doi.org/10.1364/OE.22.009471


View Full Text Article

Enhanced HTML    Acrobat PDF (1306 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Mask topography effects need to be taken into consideration for a more accurate solution of source mask optimization (SMO) in advanced optical lithography. However, rigorous 3D mask models generally involve intensive computation and conventional SMO fails to manipulate the mask-induced undesired phase errors that degrade the usable depth of focus (uDOF) and process yield. In this work, an optimization approach incorporating pupil wavefront aberrations into SMO procedure is developed as an alternative to maximize the uDOF. We first design the pupil wavefront function by adding primary and secondary spherical aberrations through the coefficients of the Zernike polynomials, and then apply the conjugate gradient method to achieve an optimal source-mask pair under the condition of aberrated pupil. We also use a statistical model to determine the Zernike coefficients for the phase control and adjustment. Rigorous simulations of thick masks show that this approach provides compensation for mask topography effects by improving the pattern fidelity and increasing uDOF.

© 2014 Optical Society of America

OCIS Codes
(110.5220) Imaging systems : Photolithography
(110.1758) Imaging systems : Computational imaging
(110.4235) Imaging systems : Nanolithography

ToC Category:
Imaging Systems

History
Original Manuscript: January 29, 2014
Revised Manuscript: April 4, 2014
Manuscript Accepted: April 4, 2014
Published: April 11, 2014

Citation
Jia Li and Edmund Y. Lam, "Robust source and mask optimization compensating for mask topography effects in computational lithography," Opt. Express 22, 9471-9485 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-8-9471


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Choi, I.-Y. Kang, J. S. Park, I. K. Shin, C.-U. Jeon, “Manufacurability of computation lithography mask: Current limit and requirements for sub-20nm node,” in Optical Microlithography XXVI, W. Conley, ed. (2013), vol. 8683 of Proc. SPIE, p. 86830L. [CrossRef]
  2. V. Agudelo, P. Evanschitzky, A. Erdmann, T. Fühner, F. Shao, S. Limmer, D. Fey, “Accuracy and performance of 3D mask models in optical projection lithography,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 79730O. [CrossRef]
  3. J. Finders, T. Hollink, “Mask 3D effects: Impact on imaging and placement,” in 27th European Mask and Lithography Conference, U. F. Behringer, ed. (2011), vol. 7985 of Proc. SPIE, p. 79850I. [CrossRef]
  4. A. Erdmann, F. Shao, P. Evanschitzky, T. Fühner, “Mask-topography-induced phase effects and wave aberrations in optical and extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 28, C6J1–C6J7 (2010). [CrossRef]
  5. G.-S. Yoon, H.-B. Kim, J.-W. Lee, S.-W. Choi, W.-S. Han, “Phase-shifted assist feature OPC for sub-45nm node optical lithography,” in Optical Microlithography XX, D. G. Flagello, ed. (2007), vol. 6520 of Proc. SPIE, p. 65201A. [CrossRef]
  6. T. Fühner, P. Evanschitzky, A. Erdmann, “Mutual source, mask and projector pupil optimization,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83260I. [CrossRef]
  7. M. K. Sears, B. Smith, “Modeling the effects of pupil-manipulated spherical aberration in optical nanolithography,” J. Micro/Nanolith., MEMS, MOEMS 12, 013008 (2013). [CrossRef]
  8. A. K. Wong, A. R. Neureuther, “Mask topography effects in projection printing of phase phifting masks,” IEEE Trans. on Electron Devices 41, 895–902 (1994). [CrossRef]
  9. M. G. Moharam, E. B. Gram, D. A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  10. F. Shao, P. Evanschitzky, D. Reibold, A. Erdmann, “Fast rigorous simulation of mask diffraction using the waveguide method with parallelized decomposition technique,” in 24th European Mask and Lithography Conference, U. F. W. Behringer, ed. (2008), vol. 6792 of Proc. SPIE, p. 679206. [CrossRef]
  11. T. H. Coskun, H. Dai, H.-T. Huang, V. Kamat, C. Ngai, “Accounting for mask topography effects in source-mask optimization for advanced nodes,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 79730P. [CrossRef]
  12. E. Y. Lam, A. K. Wong, “Computation lithography: Virtual reality and virtual virtuality,” Opt. Express 17, 12259–12268 (2009). [CrossRef] [PubMed]
  13. E. Y. Lam, A. K. Wong, “Nebulous hotspot and algorithm variability in computation lithography,” J. Micro/Nanolith. MEMS MOEMS 9, 033002 (2010). [CrossRef]
  14. M. Fakhry, Y. Granik, K. Adam, K. Lai, “Total source mask optimization: High-capacity, resist modeling, and production-ready mask solution,” in Photomask Technology 2011, W. Maurer, F. E. Abboud, eds. (2011), vol. 8166 of Proc. SPIE, p. 81663M. [CrossRef]
  15. J. Li, S. Liu, E. Y. Lam, “Efficient source and mask optimization with augmented Lagrangian methods in optical lithography,” Opt. Express 21, 8076–8090 (2013). [CrossRef] [PubMed]
  16. X. Ma, C. Han, Y. Li, L. Dong, G. R. Arce, “Pixelated source and mask optimization for immersion lithography,” J. Opt. Soc. Am. A 30, 112–123 (2013). [CrossRef]
  17. T. Dam, V. Tolani, P. Hu, K.-H. Baik, L. Pang, B. Gleason, S. D. Slonaker, J. K. Tyminski, “Source-mask optimization (SMO): from theory to practice,” in Optical Microlithography XXIII, M. V. Dusa, W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 764028. [CrossRef]
  18. M. K. Sears, G. Fenger, J. Mailfert, B. Smith, “Extending SMO into the lens pupil domain,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 79731B. [CrossRef]
  19. H. Aoyama, Y. Mizuno, N. Hirayanagi, N. Kita, R. Matsui, H. Izumi, K. Tajima, J. Siebert, W. Demmerle, T. Matsuyama, “Impact of realistic source shape and flexibility on source mask optimization,” J. Micro/Nanolith. MEMS MOEMS 13, 011005 (2014). [CrossRef]
  20. V. Agudelo, P. Evanschitzky, A. Erdmann, T. Fühner, “Evaluation of various compact mask and imaging models for the efficient simulation of mask topography effects in immersion lithography,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 832609. [CrossRef]
  21. A. K. Wong, Optical Imaging in Projection Microlithography (SPIE, 2005, Chap. 2). [CrossRef]
  22. N. Jia, E. Y. Lam, “Pixelated source mask optimization for process robustness in optical lithography,” Opt. Express 19, 19384–19398 (2011). [CrossRef] [PubMed]
  23. J. Li, Y. Shen, E. Y. Lam, “Hotspot-aware fast source and mask optimization,” Opt. Express 20, 21792–21804 (2012). [CrossRef] [PubMed]
  24. A. Poonawala, P. Milanfar, “Mask design for optical microlithography — an inverse imaging problem,” IEEE Trans. Image Process. 16, 774–788 (2007). [CrossRef] [PubMed]
  25. V. N. Mahajan, Aberration Theory Made Simple, 2 (SPIE, 2011, Chap. 1).
  26. C. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (Wiley, 2007, Chap. 3). [CrossRef]
  27. P. Evanschitzky, F. Shao, T. Fühner, A. Erdmann, “Compensation of mask induced aberrations by projector wavefront control,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 797329. [CrossRef]
  28. M. K. Sears, J. Bekaert, B. W. Smith, “Lens wavefront compensation for 3D photomask effects in subwavelength optical lithography,” Appl. Opt. 52, 314–322 (2013). [CrossRef] [PubMed]
  29. N. Jia, E. Y. Lam, “Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis,” J. Opt. 12, 045601 (2010). [CrossRef]
  30. Y. Shen, N. Jia, N. Wong, E. Y. Lam, “Robust level-set-based inverse lithography,” Opt. Express 19, 5511–5521 (2011). [CrossRef] [PubMed]
  31. J. Nocedal, S. J. Wright, Numerical Optimization, 2 (Springer, 2006, Chap. 5).
  32. Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, H. J. Levinson, “Considerations in source-mask optimization for logic applications,” in Optical Microlithography XXIII, M. V. Dusa, W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 76401J. [CrossRef]
  33. J.-C. Yu, P. Yu, H.-Y. Chao, “Library-based illumination synthesis for critical CMOS patterning,” IEEE Trans. Image Process. 22, 2811–2821 (2013). [CrossRef] [PubMed]
  34. X. Wu, S. Liu, J. Li, E. Y. Lam, “Efficient source mask optimization with Zernike polynomial functions for source representation,” Opt. Express 22, 3924–3937 (2014). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited