OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 9498–9507

High power NIR fiber-optic femtosecond Cherenkov radiation and its application on nonlinear light microscopy

Ming-Che Chan, Chi-Hsiang Lien, Jyan-Yo Lu, and Bo-Han Lyu  »View Author Affiliations


Optics Express, Vol. 22, Issue 8, pp. 9498-9507 (2014)
http://dx.doi.org/10.1364/OE.22.009498


View Full Text Article

Enhanced HTML    Acrobat PDF (1515 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We reported a record high power (>250 mW) and compact near-infrared fiber-optic femtosecond Cherenkov radiation source and its new application on nonlinear light microscopy for the first time (to our best knowledge). The high power femtosecond Cherenkov radiation was generated by 1.03 μm femtosecond pulses from a portable diode-pumped laser and a photonic crystal fiber as a compact, flexible, and highly efficient wavelength convertor. Sectioned nonlinear light microscopy images from mouse brain blood vessel network and rat tail tendon were then performed by the demonstrated light source. Due to the advantages of its high average output power (>250 mW), high pulse energy (>4 nJ), excellent wavelength conversion efficiency (>40%), compactness, simplicity in configuration, and turn-key operation, the demonstrated femtosecond Cherenkov radiation source could thus be widely applicable as an alternative excitation source to mode-locked Ti:Sapphire lasers for future clinical nonlinear microscopy or other applications requiring synchronized multi-wavelength light sources.

© 2014 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: February 20, 2014
Revised Manuscript: April 3, 2014
Manuscript Accepted: April 3, 2014
Published: April 11, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Ming-Che Chan, Chi-Hsiang Lien, Jyan-Yo Lu, and Bo-Han Lyu, "High power NIR fiber-optic femtosecond Cherenkov radiation and its application on nonlinear light microscopy," Opt. Express 22, 9498-9507 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-8-9498


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  2. J. M. Squirrell, D. L. Wokosin, J. G. White, B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999). [CrossRef] [PubMed]
  3. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013). [CrossRef] [PubMed]
  4. S. Sakadzić, U. Demirbas, T. R. Mempel, A. Moore, S. Ruvinskaya, D. A. Boas, A. Sennaroglu, F. X. Kaertner, J. G. Fujimoto, “Multi-photon microscopy with a low-cost and highly efficient Cr: LiCAF laser,” Opt. Express 16(25), 20848–20863 (2008). [CrossRef] [PubMed]
  5. M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, S. E. Fraser, “Multiphoton excitation spectra in biological samples,” J. Biomed. Opt. 8(3), 329–338 (2003). [CrossRef] [PubMed]
  6. S. P. Tai, M. C. Chan, T. H. Tsai, S. H. Guol, L. J. Chen, C.-K. Sun, “Two-photon fluorescence microscope with a hollow-core photonic crystal fiber,” Opt. Express 12(25), 6122–6128 (2004). [CrossRef] [PubMed]
  7. S. H. Chia, C. H. Yu, C. H. Lin, N. C. Cheng, T. M. Liu, M. C. Chan, I. H. Chen, C.-K. Sun, “Miniaturized video-rate epi-third-harmonic-generation fiber-microscope,” Opt. Express 18(16), 17382–17391 (2010). [CrossRef] [PubMed]
  8. R. Tanaka, S. Fukushima, K. Sasaki, Y. Tanaka, H. Murota, T. Matsumoto, T. Araki, T. Yasui, “In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy,” J. Biomed. Opt. 18(6), 061231 (2013). [CrossRef] [PubMed]
  9. R. M. Williams, W. R. Zipfel, W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005). [CrossRef] [PubMed]
  10. C. Zimmermann, V. Vuletic, A. Hemmerich, L. Ricci, T. W. Hänsch, “Design for a compact tunable Ti:sapphire laser,” Opt. Lett. 20(3), 297–299 (1995). [CrossRef] [PubMed]
  11. P. St. J. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003). [CrossRef] [PubMed]
  12. P. St. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006). [CrossRef]
  13. M. C. Chan, T. M. Liu, S. P. Tai, C.-K. Sun, “Compact fiber-delivered Cr:Forsterite laser for nonlinear light microscopy,” J. Biomed. Opt. 10(5), 054006 (2005). [CrossRef] [PubMed]
  14. M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, C.-K. Sun, “1.2-2.2 μm Tunable Raman Soliton Source Based on a Cr:Forsterite-Laser and a Photonic-Crystal Fiber,” IEEE Photon. Technol. Lett. 20(11), 900–922 (2008). [CrossRef]
  15. G. Chang, L.-J. Chen, F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett. 35(14), 2361–2363 (2010). [CrossRef] [PubMed]
  16. X. M. Liu, J. Lægsgaard, U. Møller, H. H. Tu, S. A. Boppart, D. Turchinovich, “All-fiber femtosecond Cherenkov radiation source,” Opt. Lett. 37(13), 2769–2771 (2012). [CrossRef] [PubMed]
  17. J. Takayanagi, T. Sugiura, M. Yoshida, N. Nishizawa, “1.0-1.7-μm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18(21), 2284–2286 (2006). [CrossRef]
  18. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  19. W. H. Lin, C. M. Chen, Y. C. Lan, and M. C. Chan are preparing a manuscript to be called “Numerical analysis of synchronized fiber-optic multiple wavelength converters through Cherenkov radiation and soliton-self-frequency shift.”
  20. M. T. Tsai, M. C. Chan, “Simultaneous 0.8, 1.0, and 1.3 μm multi-spectral and common-path broadband source for optical coherence tomography,” Opt. Lett. 39(4), 865–868 (2014). [CrossRef] [PubMed]
  21. J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, 1996)
  22. J. Y Lu, C. W. Huang, J. C. Chen, and M. C. Chan are preparing a manuscript to be called “Energenic 1.3 μm Raman soliton source for multi-photon and multi-harmonic microscopy.”
  23. G. J. Tearney, R. H. Webb, B. E. Bouma, “Spectrally encoded confocal microscopy,” Opt. Lett. 23(15), 1152–1154 (1998). [CrossRef] [PubMed]
  24. Y. Mao, S. Chang, E. Murdock, C. Flueraru, “Simultaneous dual-wavelength-band common-path swept-source optical coherence tomography with single polygon mirror scanner,” Opt. Lett. 36(11), 1990–1992 (2011). [CrossRef] [PubMed]
  25. M. T. Myaing, J. Urayama, A. Braun, T. B. Norris, “Nonlinear propagation of negatively chirped pulses: Maximizing the peak intensity at the output of a fiber probe,” Opt. Express 7(5), 210–214 (2000). [CrossRef] [PubMed]
  26. I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, B.-L. Lin, “Wavelength dependent cell damages in multi-photon confocal microscopy,” Opt. Quantum Electron. 34(12), 1251–1266 (2002). [CrossRef]
  27. A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999). [CrossRef]
  28. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008). [CrossRef] [PubMed]
  29. C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014). [CrossRef]
  30. S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [CrossRef] [PubMed]
  31. H. C. Wang, Y. C. Lu, C. Y. Chen, C. Y. Chi, S. C. Chin, C. C. Yang, “Non-degenerate fs pump-probe study on InGaN with multi-wavelength second-harmonic generation,” Opt. Express 13(14), 5245–5252 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: MOV (1444 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited