OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 9585–9596

Generation of biphoton correlation trains through spectral filtering

Joseph M. Lukens, Ogaga Odele, Carsten Langrock, Martin M. Fejer, Daniel E. Leaird, and Andrew M. Weiner  »View Author Affiliations

Optics Express, Vol. 22, Issue 8, pp. 9585-9596 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1326 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the generation of two-photon correlation trains based on spectral filtering of broadband biphotons. Programmable amplitude filtering is employed to create biphoton frequency combs, which when coupled with optical dispersion allows us to experimentally verify the temporal Talbot effect for entangled photons. Additionally, an alternative spectral phase-filtering approach is shown to significantly improve the overall efficiency of the generation process when a comb-like spectrum is not required. Our technique is ideal for the creation of tunable and high-repetition-rate biphoton states.

© 2014 Optical Society of America

OCIS Codes
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(270.0270) Quantum optics : Quantum optics
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Quantum Optics

Original Manuscript: March 4, 2014
Revised Manuscript: April 3, 2014
Manuscript Accepted: April 6, 2014
Published: April 14, 2014

Joseph M. Lukens, Ogaga Odele, Carsten Langrock, Martin M. Fejer, Daniel E. Leaird, and Andrew M. Weiner, "Generation of biphoton correlation trains through spectral filtering," Opt. Express 22, 9585-9596 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Perina, “Characterization of a resonator using entangled two-photon states,” Opt. Commun. 221, 153–161 (2003). [CrossRef]
  2. Y. J. Lu, R. L. Campbell, Z. Y. Ou, “Mode-locked two-photon states,” Phys. Rev. Lett. 91, 163602 (2003). [CrossRef] [PubMed]
  3. H. Goto, Y. Yanagihara, H. Wang, T. Horikiri, T. Kobayashi, “Observation of an oscillatory correlation function of multimode two-photon pairs,” Phys. Rev. A 68, 015803 (2003). [CrossRef]
  4. H. Goto, H. Wang, T. Horikiri, Y. Yanagihara, T. Kobayashi, “Two-photon interference of multimode two-photon pairs with an unbalanced interferometer,” Phys. Rev. A 69, 035801 (2004). [CrossRef]
  5. H. Wang, T. Horikiri, T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004). [CrossRef]
  6. H.-b. Wang, T. Kobayashi, “Quantum interference of a mode-locked two-photon state,” Phys. Rev. A 70, 053816 (2004). [CrossRef]
  7. M. A. Sagioro, C. Olindo, C. H. Monken, S. Pádua, “Time control of two-photon interference,” Phys. Rev. A 69, 053817 (2004). [CrossRef]
  8. A. Zavatta, S. Viciani, M. Bellini, “Recurrent fourth-order interference dips and peaks with a comblike two-photon entangled state,” Phys. Rev. A 70, 023806 (2004). [CrossRef]
  9. F.-Y. Wang, B.-S. Shi, G.-C. Guo, “Observation of time correlation function of multimode two-photon pairs on a rubidium D2 line,” Opt. Lett. 33, 2191–2193 (2008). [CrossRef] [PubMed]
  10. W. C. Jiang, X. Lu, J. Zhang, O. Painter, Q. Lin, “A silicon-chip source of bright photon-pair comb,” arXiv:1210.4455 (2012).
  11. A. Aspect, “Bell’s inequality test: more ideal than ever,” Nature 398, 189–190 (1999). [CrossRef]
  12. N. Gisin, R. Thew, “Quantum communication,” Nature Photon. 1, 165–171 (2007). [CrossRef]
  13. T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002). [CrossRef] [PubMed]
  14. N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nature Photon. 5, 186–188 (2011). [CrossRef]
  15. S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17, 16558–16570 (2009). [CrossRef] [PubMed]
  16. S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012). [CrossRef] [PubMed]
  17. Y. J. Lu, Z. Y. Ou, “Optical parametric oscillator far below threshold: experiment versus theory,” Phys. Rev. A 62, 033804 (2000). [CrossRef]
  18. V. Torres-Company, J. Lancis, H. Lajunen, A. T. Friberg, “Coherence revivals in two-photon frequency combs,” Phys. Rev. A 84, 033830 (2011). [CrossRef]
  19. T. Jannson, J. Jannson, “Temporal self-imaging effect in single-mode fibers,” J. Opt. Soc. Am. 71, 1373–1376 (1981).
  20. V. Torres-Company, J. Lancis, P. Andrés, “Space-time analogies in optics,” in Progress in Optics, E. Wolf, ed. vol. 56, 1–80 (Elsevier, 2011). [CrossRef]
  21. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000). [CrossRef]
  22. A. M. Weiner, Ultrafast Optics (Wiley, Hoboken, NJ, 2009). [CrossRef]
  23. A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun. 284, 3669–3692 (2011). [CrossRef]
  24. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, UK, 1995). [CrossRef]
  25. Y. Shih, “Entangled biphoton source - property and preparation,” Rep. Prog. Phys. 66, 1009 (2003). [CrossRef]
  26. B. Dayan, A. Pe’er, A. A. Friesem, Y. Silberberg, “Nonlinear interactions with an ultrahigh flux of broadband entangled photons,” Phys. Rev. Lett. 94, 043602 (2005). [CrossRef] [PubMed]
  27. A. Pe’er, B. Dayan, A. A. Friesem, Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005). [CrossRef]
  28. F. Zäh, M. Halder, T. Feurer, “Amplitude and phase modulation of time-energy entangled two-photon states,” Opt. Express 16, 16452–16458 (2008). [CrossRef] [PubMed]
  29. K. A. O’Donnell, A. B. U’Ren, “Time-resolved up-conversion of entangled photon pairs,” Phys. Rev. Lett. 103, 123602 (2009). [CrossRef]
  30. S. Sensarn, G. Y. Yin, S. E. Harris, “Generation and compression of chirped biphotons,” Phys. Rev. Lett. 104, 253602 (2010). [CrossRef] [PubMed]
  31. K. A. O’Donnell, “Observations of dispersion cancellation of entangled photon pairs,” Phys. Rev. Lett. 106, 063601 (2011). [CrossRef]
  32. J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, A. M. Weiner, “Demonstration of high-order dispersion cancellation with an ultrahigh-efficiency sum-frequency correlator,” Phys. Rev. Lett. 111, 193603 (2013). [CrossRef] [PubMed]
  33. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002). [CrossRef]
  34. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24, 2579 (2006). [CrossRef]
  35. A. M. Weiner, D. E. Leaird, “Generation of terahertz-rate trains of femtosecond pulses by phase-only filtering,” Opt. Lett. 15, 51–53 (1990). [CrossRef] [PubMed]
  36. H. Talbot, “Facts relating to optical science.” Philos. Mag. Ser. 3 9, 401–407 (1836).
  37. K. Patorski, “The self-imaging phenomenon and its applications,” in Progress in Optics, E. Wolf, ed., vol. 27, 1–108 (Elsevier, 1989). [CrossRef]
  38. J. Wen, Y. Zhang, M. Xiao, “The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics,” Adv. Opt. Photon. 5, 83–130 (2013). [CrossRef]
  39. K.-H. Luo, J. Wen, X.-H. Chen, Q. Liu, M. Xiao, L.-A. Wu, “Second-order Talbot effect with entangled photon pairs,” Phys. Rev. A 80, 043820 (2009). [CrossRef]
  40. X.-B. Song, H.-B. Wang, J. Xiong, K. Wang, X. Zhang, K.-H. Luo, L.-A. Wu, “Experimental observation of quantum Talbot effects,” Phys. Rev. Lett. 107, 033902 (2011). [CrossRef] [PubMed]
  41. B. H. Kolner, M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett. 14, 630–632 (1989). [CrossRef] [PubMed]
  42. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963 (1994). [CrossRef]
  43. T. Yamamoto, T. Komukai, K. Suzuki, A. Takada, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett. 43, 1040–1042 (2007). [CrossRef]
  44. V. Torres-Company, J. Lancis, P. Andrés, “Lossless equalization of frequency combs,” Opt. Lett. 33, 1822–1824 (2008). [CrossRef] [PubMed]
  45. J. Azaña, M. A. Muriel, “Technique for multiplying the repetition rates of periodic trains of pulses by means of a temporal self-imaging effect in chirped fiber gratings,” Opt. Lett. 24, 1672–1674 (1999). [CrossRef]
  46. J. Azaña, M. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7, 728–744 (2001). [CrossRef]
  47. J. Caraquitena, Z. Jiang, D. E. Leaird, A. M. Weiner, “Tunable pulse repetition-rate multiplication using phase-only line-by-line pulse shaping,” Opt. Lett. 32, 716–718 (2007). [CrossRef] [PubMed]
  48. J. M. Lukens, D. E. Leaird, A. M. Weiner, “A temporal cloak at telecommunication data rate,” Nature 498, 205–208 (2013). [CrossRef] [PubMed]
  49. J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992). [CrossRef] [PubMed]
  50. I. Sizer, “Increase in laser repetition rate by spectral selection,” IEEE J. Quantum Electron. 25, 97–103 (1989). [CrossRef]
  51. P. Petropoulos, M. Ibsen, M. N. Zervas, D. J. Richardson, “Generation of a 40-GHz pulse stream by pulse multiplication with a sampled fiber Bragg grating,” Opt. Lett. 25, 521–523 (2000). [CrossRef]
  52. K. Yiannopoulos, K. Vyrsokinos, E. Kehayas, N. Pleros, K. Vlachos, H. Avramopoulos, G. Guekos, “Rate multiplication by double-passing Fabry-Perot filtering,” IEEE Photon. Technol. Lett. 15, 1294–1296 (2003). [CrossRef]
  53. A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317–1319 (1990). [CrossRef] [PubMed]
  54. M. R. Schroeder, Number Theory in Science and Communication (Springer-Verlag, Berlin, 1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited