OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 9667–9674

Towards nonlinear conversion from mid- to near-infrared wavelengths using Silicon Germanium waveguides

Kamal Hammani, Mohamed A. Ettabib, Adonis Bogris, Alexandros Kapsalis, Dimitris Syvridis, Mickael Brun, Pierre Labeye, Sergio Nicoletti, and Periklis Petropoulos  »View Author Affiliations


Optics Express, Vol. 22, Issue 8, pp. 9667-9674 (2014)
http://dx.doi.org/10.1364/OE.22.009667


View Full Text Article

Enhanced HTML    Acrobat PDF (2064 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the design, fabrication and characterization of a highly nonlinear graded-index SiGe waveguide for the conversion of mid-infrared signals to the near-infrared. Using phase-matched four-wave mixing, we report the conversion of a signal at 2.65 µm to 1.77 µm using a pump at 2.12 µm.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.4760) Materials : Optical properties
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 4, 2014
Revised Manuscript: April 3, 2014
Manuscript Accepted: April 3, 2014
Published: April 15, 2014

Citation
Kamal Hammani, Mohamed A. Ettabib, Adonis Bogris, Alexandros Kapsalis, Dimitris Syvridis, Mickael Brun, Pierre Labeye, Sergio Nicoletti, and Periklis Petropoulos, "Towards nonlinear conversion from mid- to near-infrared wavelengths using Silicon Germanium waveguides," Opt. Express 22, 9667-9674 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-8-9667


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Yao, A. J. Hoffman, C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012). [CrossRef]
  2. K. D. Buchter, M. C. Wiegand, H. Herrmann, and W. Sohler, “Nonlinear optical down- and up-conversion in PPLN waveguides for mid-infrared spectroscopy,” in CLEO Europe (2009), paper CD_P8.
  3. T. W. Neely, L. Nugent-Glandorf, F. Adler, S. A. Diddams, “Broadband mid-infrared frequency upconversion and spectroscopy with an aperiodically poled LiNbO3 waveguide,” Opt. Lett. 37(20), 4332–4334 (2012). [CrossRef] [PubMed]
  4. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19(21), 20172–20181 (2011). [CrossRef] [PubMed]
  5. B. Kuyken, X. Liu, R. M. Osgood, Y. A. Vlasov, G. Roelkens, R. Baets, and W. M. J. Green, “Frequency conversion of mid-infrared optical signals into the telecom band using nonlinear silicon nanophotonic wires,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011(Optical Society of America, 2011), paper OThU4. [CrossRef]
  6. N. K. Hon, R. Soref, B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared,” J. Appl. Phys. 110(1), 011301 (2011). [CrossRef]
  7. M. A. Ettabib, K. Hammani, F. Parmigiani, L. Jones, A. Kapsalis, A. Bogris, D. Syvridis, M. Brun, P. Labeye, S. Nicoletti, P. Petropoulos, “FWM-based wavelength conversion of 40 Gbaud PSK signals in a silicon germanium waveguide,” Opt. Express 21(14), 16683–16689 (2013). [CrossRef] [PubMed]
  8. K. Hammani, M. A. Ettabib, A. Bogris, A. Kapsalis, D. Syvridis, M. Brun, P. Labeye, S. Nicoletti, D. J. Richardson, P. Petropoulos, “Optical properties of silicon germanium waveguides at telecommunication wavelengths,” Opt. Express 21(14), 16690–16701 (2013). [CrossRef] [PubMed]
  9. F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19(16), 15212–15220 (2011). [CrossRef] [PubMed]
  10. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28(22), 2225–2227 (2003). [CrossRef] [PubMed]
  11. S. Pitois, G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Opt. Commun. 226(1-6), 415–422 (2003). [CrossRef]
  12. P. Barritault, M. Brun, P. Labeye, O. Lartigue, J.-M. Hartmann, S. Nicoletti, “Mlines characterization of the refractive index profile of SiGe gradient waveguides at 2.15 µm,” Opt. Express 21(9), 11506–11515 (2013). [CrossRef] [PubMed]
  13. Q. Lin, T. J. Johnson, R. Perahia, C. P. Michael, O. J. Painter, “A proposal for highly tunable optical parametric oscillation in silicon micro-resonators,” Opt. Express 16(14), 10596–10610 (2008). [CrossRef] [PubMed]
  14. K.-D. F. Büchter, H. Herrmann, C. Langrock, M. M. Fejer, W. Sohler, “All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared,” Opt. Lett. 34(4), 470–472 (2009). [CrossRef] [PubMed]
  15. S. P. Jung, Z. Sanja, M. Slaven, M. C.-B. Jose, B. D. Ivan, M. Shayan, and R. Stojan, “Mid-Infrared Four-Wave Mixing in Silicon Waveguides Using Telecom-Compatible Light Sources,” in Frontiers in Optics (Optical Society of America, 2009), paper PDPB3.
  16. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited