OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 9715–9733

Snapshot coherence-gated direct wavefront sensing for multi-photon microscopy

T. I. M. van Werkhoven, J. Antonello, H. H. Truong, M. Verhaegen, H. C. Gerritsen, and C. U. Keller  »View Author Affiliations


Optics Express, Vol. 22, Issue 8, pp. 9715-9733 (2014)
http://dx.doi.org/10.1364/OE.22.009715


View Full Text Article

Enhanced HTML    Acrobat PDF (7279 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Deep imaging in turbid media such as biological tissue is challenging due to scattering and optical aberrations. Adaptive optics has the potential to compensate the tissue aberrations. We present a wavefront sensing scheme for multi-photon scanning microscopes using the pulsed, near-infrared light reflected back from the sample utilising coherence gating and a confocal pinhole to isolate the light from a layer of interest. By interfering the back-reflected light with a tilted reference beam, we create a fringe pattern with a known spatial carrier frequency in an image of the back-aperture plane of the microscope objective. The wavefront aberrations distort this fringe pattern and thereby imprint themselves at the carrier frequency, which allows us to separate the aberrations in the Fourier domain from low spatial frequency noise. A Fourier analysis of the modulated fringes combined with a virtual Shack-Hartmann sensor for smoothing yields a modal representation of the wavefront suitable for correction. We show results with this method correcting both DM-induced and sample-induced aberrations in rat tail collagen fibres as well as a Hoechst-stained MCF-7 spheroid of cancer cells.

© 2014 Optical Society of America

OCIS Codes
(080.1010) Geometric optics : Aberrations (global)
(290.3030) Scattering : Index measurements
(110.0113) Imaging systems : Imaging through turbid media
(180.4315) Microscopy : Nonlinear microscopy
(170.6935) Medical optics and biotechnology : Tissue characterization
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Microscopy

History
Original Manuscript: November 28, 2013
Revised Manuscript: January 20, 2014
Manuscript Accepted: February 8, 2014
Published: April 15, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Citation
T. I. M. van Werkhoven, J. Antonello, H. H. Truong, M. Verhaegen, H. C. Gerritsen, and C. U. Keller, "Snapshot coherence-gated direct wavefront sensing for multi-photon microscopy," Opt. Express 22, 9715-9733 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-8-9715


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Minsky, “Microscopy apparatus,” US Patent 3,013,467 (1961).
  2. D. M. Shotton, “Confocal scanning optical microscopy and its applications for biological specimens,” J. Cell Sci. 94, 175–206 (1989).
  3. J. B. Pawley, ed., Handbook Of Biological Confocal Microscopy, 3rd ed. (SpringerUS, Boston, MA, 2006). [CrossRef]
  4. W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef] [PubMed]
  5. W. R. Zipfel, R. M. Williams, W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nature Biotechnol. 21, 1369–1377 (2003). [CrossRef]
  6. M. Schwertner, M. J. Booth, M. A. A. Neil, T. Wilson, “Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry,” J. Microsc. 213, 11–19 (2004). [CrossRef]
  7. M. Schwertner, M. J. Booth, T. Wilson, “Specimen-induced distortions in light microscopy,” J. Microsc. 228, 97–102 (2007). [CrossRef] [PubMed]
  8. C. J. de Grauw, J. M. Vroom, H. T. M. van der Voort, H. C. Gerritsen, “Imaging Properties in Two-Photon Excitation Microscopy and Effects of Refractive-Index Mismatch in Thick Specimens,” Appl. Opt. 38, 5995–6003 (1999). [CrossRef]
  9. M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc., A 365, 2829–2843 (2007). [CrossRef]
  10. M. J. Booth, “Wavefront sensorless adaptive optics for large aberrations,” Opt. Lett. 32, 5–7 (2007). [CrossRef]
  11. P. Marsh, D. Burns, J. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123–1130 (2003). [CrossRef] [PubMed]
  12. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34, 2495–2497 (2009). [CrossRef] [PubMed]
  13. D. Débarre, M. J. Booth, T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express 15, 8176–8190 (2007). [CrossRef] [PubMed]
  14. A. Facomprez, E. Beaurepaire, D. Débarre, “Accuracy of correction in modal sensorless adaptive optics,” Opt. Express 20, 2598–2612 (2012). [CrossRef] [PubMed]
  15. O. Azucena, J. Crest, J. Cao, W. Sullivan, P. Kner, D. Gavel, D. Dillon, S. Olivier, J. Kubby, “Wavefront aberration measurements and corrections through thick tissue using fluorescent microsphere reference beacons,” Opt. Express 18, 17521–17532 (2010). [CrossRef] [PubMed]
  16. O. Azucena, J. Crest, S. Kotadia, W. Sullivan, X. Tao, M. Reinig, D. Gavel, S. Olivier, J. Kubby, “Adaptive optics wide-field microscopy using direct wavefront sensing,” Opt. Lett. 36, 825–827 (2011). [CrossRef] [PubMed]
  17. X. Tao, A. Norton, M. Kissel, O. Azucena, J. Kubby, “Adaptive optical two-photon microscopy using autofluorescent guide stars,” Opt. Lett. 38, 5075–5078 (2013). [CrossRef] [PubMed]
  18. X. Tao, J. Crest, S. Kotadia, O. Azucena, D. C. Chen, W. Sullivan, J. Kubby, “Live imaging using adaptive optics with fluorescent protein guide-stars,” Opt. Express 20, 15969, 2012). [CrossRef] [PubMed]
  19. X. Tao, O. Azucena, M. Fu, Y. Zuo, D. C. Chen, J. Kubby, “Adaptive optics microscopy with direct wavefront sensing using fluorescent protein guide stars,” Opt. Lett. 36, 3389–3391 (2011). [CrossRef] [PubMed]
  20. X. Tao, B. Fernandez, O. Azucena, M. Fu, D. Garcia, Y. Zuo, D. C. Chen, J. Kubby, “Adaptive optics confocal microscopy using direct wavefront sensing,” Opt. Lett. 36, 1062–1064 (2011). [CrossRef] [PubMed]
  21. R. Foy, A. Labeyrie, “Feasibility of adaptive telescope with laser probe,” Astron. Astrophys. 152, L29–L31 (1985).
  22. R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star,” Nature 353, 144–146 (1991). [CrossRef]
  23. M. Feierabend, M. Rückel, W. Denk, “Coherence-gated wave-front sensing in strongly scattering samples,” Opt. Lett. 29, 2255–2257 (2004). [CrossRef] [PubMed]
  24. M. Rückel, J. A. Mack-Bucher, W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Nat. Acad. Sci. USA 103, 17137–17142 (2006). [CrossRef]
  25. S. Tuohy, A. G. Podoleanu, “Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront sensor,” Opt. Express 18, 3458–3476 (2010). [CrossRef] [PubMed]
  26. J. W. Cha, J. Ballesta, P. T. C. So, “Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy,” J. Biomed. Opt. 15, 046022, 2010). [CrossRef] [PubMed]
  27. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, A. Et, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  28. M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  29. W. W. Macy, “Two-dimensional fringe-pattern analysis,” Appl. Opt. 22, 3898–3901 (1983). [CrossRef] [PubMed]
  30. D. J. Bone, H. A. Bachor, R. J. Sandeman, “Fringe-pattern analysis using a 2-D Fourier transform,” Appl. Opt. 25, 1653–1660 (1986). [CrossRef] [PubMed]
  31. M. Takeda, “Spatial-carrier fringe-pattern analysis and its applications to precision interferometry and profilometry: An overview,” Industrial Metrology 1, 79–99 (1990). [CrossRef]
  32. C. Paterson, I. Munro, J. C. Dainty, “A low cost adaptive optics system using a membrane mirror,” Opt. Express 6, 175, 2000). [CrossRef] [PubMed]
  33. S. A. Rahman, M. J. Booth, “Direct wavefront sensing in adaptive optical microscopy using backscattered light,” Appl. Opt. 52, 5523–5532 (2013). [CrossRef] [PubMed]
  34. J. Wang, J.-F. Léger, J. Binding, A. C. Boccara, S. Gigan, L. Bourdieu, “Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer,” Biomed. Opt. Express 3, 2510–2525 (2012). [CrossRef] [PubMed]
  35. M. Feierabend, “Coherence-Gated Wave-Front Sensing in Strongly Scattering Samples,” Ph.D. thesis, Ruperto-Carola University of Heidelberg, Heidelberg, Germany (2004).
  36. G. J. Brakenhoff, K. Visscher, H. T. M. Voort, Size and Shape of The Confocal Spot: Control and Relation to 3D Imaging and Image Processing, in Handbook of Biological Confocal Microscopy” J. B. Pawley, ed. (Plenum Press, New York, USA, 1990), pp. 87–91, revised ed. [CrossRef]
  37. J. A. Nelder, R. Mead, “A Simplex Method for Function Minimization,” The Computer Journal 7, 308–313 (1965). [CrossRef]
  38. J. Antonello, M. Verhaegen, R. Fraanje, T. van Werkhoven, H. C. Gerritsen, C. U. Keller, “Semidefinite programming for model-based sensorless adaptive optics,” J. Opt. Soc. Am. A 29, 2428–2438 (2012). [CrossRef]
  39. P. T. C. So, C. Y. Dong, B. R. Masters, K. M. Berland, “Two-Photon Excitation Fluorescence Microscopy,” Annual Review of Biomedical Engineering 2, 399–429 (2000). [CrossRef]
  40. M. Peck, Interferometry mathematics, algorithms and data(2010).
  41. K. Itoh, “Analysis of the phase unwrapping algorithm,” Appl. Opt. 21, 2470, 1982). [CrossRef] [PubMed]
  42. D. C. Ghiglia, M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software, 1st ed. (Wiley-Interscience, 1998).
  43. W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. 70, 998–1006 (1980). [CrossRef]
  44. F. von Zernike, “Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode,” Physica 1, 689–704 (1934). [CrossRef]
  45. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  46. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 1145–1150 (1976). [CrossRef]
  47. P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995). [CrossRef]
  48. P. Artal, I. Iglesias, N. López-Gil, D. G. Green, “Double-pass measurements of the retinal-image quality with unequal entrance and exit pupil sizes and the reversibility of the eye’s optical system,” J. Opt. Soc. Am. A 12, 2358–2366 (1995). [CrossRef]
  49. M. Rückel, W. Denk, “Properties of coherence-gated wavefront sensing,” J. Opt. Soc. Am. A 24, 3517–3529 (2007). [CrossRef]
  50. H. D. Soule, J. Vazguez, A. Long, S. Albert, M. Brennan, “A human cell line from a pleural effusion derived from a breast carcinoma.” J. Natl. Cancer Inst. 51, 1409–1416 (1973). [PubMed]
  51. J. Friedrich, C. Seidel, R. Ebner, L. A. Kunz-Schughart, “Spheroid-based drug screen: considerations and practical approach,” Nature Protocols 4, 309–324 (2009). [CrossRef] [PubMed]
  52. R. Fiolka, K. Si, M. Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light,” Opt. Express 20, 16532–16543 (2012). [CrossRef]
  53. J. Zeng, P. Mahou, M.-C. Schanne-Klein, E. Beaurepaire, D. Débarre, “3D resolved mapping of optical aberrations in thick tissues,” Biomedical Opt. Express 3, 1898–1913 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited