OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 9798–9808

Multifocal spot array generated by fractional Talbot effect phase-only modulation

Linwei Zhu, Junjie Yu, Dawei Zhang, Meiyu Sun, and Jiannong Chen  »View Author Affiliations

Optics Express, Vol. 22, Issue 8, pp. 9798-9808 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (4477 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an approach for generating a multifocal spot array (MSA) with a high numerical aperture (NA) objective. The MSA is generated by using a special designed phase-only modulation at the back aperture of an objective. Without using any iteration algorithm, the modulated phase pattern is directly obtained by the simple analytical expressions based on the fractional Talbot effect. It is shown that the number of the spots in the focal region depends solely on the fractional Talbot parameter. By engineering the phase pattern with a large fractional Talbot parameter, a large number of focal spots can be created. Furthermore, the intensity distribution of each focal spot can be manipulated by introducing a composite spatially shifted vortex beam (CSSVB) as the incident field, leading to creation of various kinds of specific shaped spots. Consequently, the MSA composed of multiple individual spots with specific shape is created by focusing the CSSVB combined with the multifocal phase-only modulation. These kinds of MSAs may be found applications in parallel optical micromanipulation, multifocal multiphoton microscopic imaging, and parallel laser printing nanofabrication.

© 2014 Optical Society of America

OCIS Codes
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(090.1970) Holography : Diffractive optics
(110.4190) Imaging systems : Multiple imaging
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Diffraction and Gratings

Original Manuscript: January 22, 2014
Revised Manuscript: March 27, 2014
Manuscript Accepted: March 28, 2014
Published: April 16, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Linwei Zhu, Junjie Yu, Dawei Zhang, Meiyu Sun, and Jiannong Chen, "Multifocal spot array generated by fractional Talbot effect phase-only modulation," Opt. Express 22, 9798-9808 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Gu, H. Lin, X. Li, “Parallel multiphoton microscopy with cylindrically polarized multifocal arrays,” Opt. Lett. 38(18), 3627–3630 (2013). [CrossRef] [PubMed]
  2. D. N. Fittinghoff, J. A. Squier, “Time-decorrelated multifocal array for multiphoton microscopy and micromachining,” Opt. Lett. 25(16), 1213–1215 (2000). [CrossRef] [PubMed]
  3. K. Bahlmann, P. T. C. So, M. Kirber, R. Reich, B. Kosicki, W. McGonagle, K. Bellve, “Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz,” Opt. Express 15(17), 10991–10998 (2007). [CrossRef] [PubMed]
  4. J. E. Curtis, B. A. Koss, D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002). [CrossRef]
  5. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  6. R. L. Eriksen, V. R. Daria, J. Gluckstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10(14), 597–602 (2002). [CrossRef] [PubMed]
  7. T. Minamikawa, M. Hashimoto, K. Fujita, S. Kawata, T. Araki, “Multi-focus excitation coherent anti-Stokes Raman scattering (CARS) microscopy and its applications for real-time imaging,” Opt. Express 17(12), 9526–9536 (2009). [CrossRef] [PubMed]
  8. A. Jesacher, M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18(20), 21090–21099 (2010). [CrossRef] [PubMed]
  9. H. Lin, B. Jia, M. Gu, “Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication,” Opt. Lett. 36(3), 406–408 (2011). [CrossRef] [PubMed]
  10. J. Kato, N. Takeyasu, Y. Adachi, H. Sun, S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102 (2005). [CrossRef]
  11. T. Nielsen, M. Fricke, D. Hellweg, P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. Microsc. 201(3), 368–376 (2001). [CrossRef] [PubMed]
  12. A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods 8(2), 139–142 (2011). [CrossRef] [PubMed]
  13. D. N. Fittinghoff, P. W. Wiseman, J. A. Squier, “Widefield multiphoton and temporally decorrelated multifocal multiphoton microscopy,” Opt. Express 7(8), 273–279 (2000). [CrossRef] [PubMed]
  14. F. Merenda, J. Rohner, J.-M. Fournier, R.-P. Salathé, “Miniaturized high-NA focusing-mirror multiple optical tweezers,” Opt. Express 15(10), 6075–6086 (2007). [CrossRef] [PubMed]
  15. Y. Shao, J. Qu, H. Li, Y. Wang, J. Qi, G. Xu, H. Niu, “High-speed spectrally resolved multifocal multiphoton microscopy,” Appl. Phys. B 99(4), 633–637 (2010). [CrossRef]
  16. L. Sacconi, E. Froner, R. Antolini, M. R. Taghizadeh, A. Choudhury, F. S. Pavone, “Multiphoton multifocal microscopy exploiting a diffractive optical element,” Opt. Lett. 28(20), 1918–1920 (2003). [CrossRef] [PubMed]
  17. J. Yu, C. Zhou, W. Jia, W. Cao, S. Wang, J. Ma, H. Cao, “Three-dimensional Dammann array,” Appl. Opt. 51(10), 1619–1630 (2012). [CrossRef] [PubMed]
  18. J. Yu, C. Zhou, W. Jia, A. Hu, W. Cao, J. Wu, S. Wang, “Three-dimensional Dammann vortex array with tunable topological charge,” Appl. Opt. 51(13), 2485–2490 (2012). [CrossRef] [PubMed]
  19. J. A. Davis, I. Moreno, J. L. Martínez, T. J. Hernandez, D. M. Cottrell, “Creating three-dimensional lattice patterns using programmable Dammann gratings,” Appl. Opt. 50(20), 3653–3657 (2011). [CrossRef] [PubMed]
  20. M. Cai, C. Tu, H. Zhang, S. Qian, K. Lou, Y. Li, H. T. Wang, “Subwavelength multiple focal spots produced by tight focusing the patterned vector optical fields,” Opt. Express 21(25), 31469–31482 (2013). [CrossRef] [PubMed]
  21. H. Guo, X. Dong, X. Weng, G. Sui, N. Yang, S. Zhuang, “Multifocus with small size, uniform intensity, and nearly circular symmetry,” Opt. Lett. 36(12), 2200–2202 (2011). [CrossRef] [PubMed]
  22. H. Guo, G. Sui, X. Weng, X. Dong, Q. Hu, S. Zhuang, “Control of the multifocal properties of composite vector beams in tightly focusing systems,” Opt. Express 19(24), 24067–24077 (2011). [CrossRef] [PubMed]
  23. M. Sakamoto, K. Oka, R. Morita, N. Murakami, “Stable and flexible ring-shaped optical-lattice generation by use of axially symmetric polarization elements,” Opt. Lett. 38(18), 3661–3664 (2013). [CrossRef] [PubMed]
  24. J. Chen, Q. Xu, G. Wang, “A four-quadrant phase filter for creating two focusing spots,” Opt. Commun. 285(6), 900–904 (2012). [CrossRef]
  25. K. Huang, P. Shi, G. W. Cao, K. Li, X. B. Zhang, Y. P. Li, “Vector-vortex Bessel-Gauss beams and their tightly focusing properties,” Opt. Lett. 36(6), 888–890 (2011). [CrossRef] [PubMed]
  26. J. Chen, Y. Yu, “The focusing property of vector Bessel–Gauss beams by a high numerical aperture objective,” Opt. Commun. 283(9), 1655–1660 (2010). [CrossRef]
  27. J. Zhao, B. Li, H. Zhao, Y. Hu, W. Wang, Y. Wang, “Tight focusing properties of the azimuthal discrete phase modulated radially polarized LG11 beam,” Opt. Commun. 296, 95–100 (2013). [CrossRef]
  28. N. J. Jenness, K. D. Wulff, M. S. Johannes, M. J. Padgett, D. G. Cole, R. L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator,” Opt. Express 16(20), 15942–15948 (2008). [CrossRef] [PubMed]
  29. E. Schonbrun, R. Piestun, P. Jordan, J. Cooper, K. D. Wulff, J. Courtial, M. Padgett, “3D interferometric optical tweezers using a single spatial light modulator,” Opt. Express 13(10), 3777–3786 (2005). [CrossRef] [PubMed]
  30. D. R. Burnham, T. Schneider, D. T. Chiu, “Effects of aliasing on the fidelity of a two dimensional array of foci generated with a kinoform,” Opt. Express 19(18), 17121–17126 (2011). [CrossRef] [PubMed]
  31. G. Lee, S. H. Song, C.-H. Oh, P.-S. Kim, “Arbitrary structuring of two-dimensional photonic crystals by use of phase-only Fourier gratings,” Opt. Lett. 29(21), 2539–2541 (2004). [CrossRef] [PubMed]
  32. K. Obata, J. Koch, U. Hinze, B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express 18(16), 17193–17200 (2010). [CrossRef] [PubMed]
  33. R. W. Gerchberg, W. O. Saxton, “Phase determination for image and diffraction plane pictures in the electron microscope,” Optik (Stuttg.) 34(3), 275–284 (1971).
  34. R. Di Leonardo, F. Ianni, G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15(4), 1913–1922 (2007). [CrossRef] [PubMed]
  35. D. Engström, A. Frank, J. Backsten, M. Goksör, J. Bengtsson, “Grid-free 3D multiple spot generation with an efficient single-plane FFT-based algorithm,” Opt. Express 17(12), 9989–10000 (2009). [CrossRef] [PubMed]
  36. H. Duadi, Z. Zalevsky, “Optimized design for realizing a large and uniform 2-D spot array,” J. Opt. Soc. Am. A 27(9), 2027–2032 (2010). [CrossRef] [PubMed]
  37. E. H. Waller, G. von Freymann, “Multi foci with diffraction limited resolution,” Opt. Express 21(18), 21708–21713 (2013). [CrossRef] [PubMed]
  38. A. W. Lohmann, J. A. Thomas, “Making an array illuminator based on the Talbot effect,” Appl. Opt. 29(29), 4337–4340 (1990). [CrossRef] [PubMed]
  39. C. Zhou, L. Liu, “Simple equations for the calculation of a multilevel phase grating for Talbot array illumination,” Opt. Commun. 115(1–2), 40–44 (1995). [CrossRef]
  40. C. Zhou, S. Stankovic, T. Tschudi, “Analytic phase-factor equations for Talbot array illuminations,” Appl. Opt. 38(2), 284–290 (1999). [CrossRef] [PubMed]
  41. L.-W. Zhu, X. Yin, Z. Hong, C.-S. Guo, “Reciprocal vector theory for diffractive self-imaging,” J. Opt. Soc. Am. A 25(1), 203–210 (2008). [CrossRef] [PubMed]
  42. B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959). [CrossRef]
  43. M. Leutenegger, R. Rao, R. A. Leitgeb, T. Lasser, “Fast focus field calculations,” Opt. Express 14(23), 11277–11291 (2006). [CrossRef] [PubMed]
  44. Q. Zhan, “Properties of circularly polarized vortex beams,” Opt. Lett. 31(7), 867–869 (2006). [CrossRef] [PubMed]
  45. H. Lin, M. Gu, “Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam,” Appl. Phys. Lett. 102(8), 084103 (2013). [CrossRef]
  46. J. Chen, X. Gao, L. Zhu, Q. Xu, W. Ma, “The generation of a complete spiral spot and multi split rings by focusing three circularly polarized vortex beams,” Opt. Commun. 318, 100–104 (2014). [CrossRef]
  47. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009). [CrossRef] [PubMed]
  48. J. Xavier, R. Dasgupta, S. Ahlawat, J. Joseph, P. K. Gupta, “Three dimensional optical twisters-driven helically stacked multi-layered microrotors,” Appl. Phys. Lett. 100(12), 121101 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited