OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 9854–9870

A method for super-resolved CARS microscopy with structured illumination in two dimensions

Joo Hyun Park, Sang-Won Lee, Eun Seong Lee, and Jae Yong Lee  »View Author Affiliations

Optics Express, Vol. 22, Issue 8, pp. 9854-9870 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2016 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a structured illumination scheme for achieving widefield coherent anti-Stokes Raman scattering (CARS) microscopy with a resolution surpassing the diffraction limit in two dimensions (2D). By acquiring a set of coherent images of a sample with third-order nonlinear susceptibility illuminated by the phase-matched excitation field of square lattice patterns, a 2D super-resolution CARS image can be reconstructed. We derive a theoretical framework to describe the coherent image formation and reconstruction scheme for this structured illumination CARS imaging system and carry out numerical simulations to investigate its imaging performance. The results demonstrate that our method promises a particular benefit on CARS microscopy by adding the super-resolution capability to improve its 2D spatial resolution by a factor of approximately three.

© 2014 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(110.2990) Imaging systems : Image formation theory
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: March 24, 2014
Manuscript Accepted: April 6, 2014
Published: April 16, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Joo Hyun Park, Sang-Won Lee, Eun Seong Lee, and Jae Yong Lee, "A method for super-resolved CARS microscopy with structured illumination in two dimensions," Opt. Express 22, 9854-9870 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999). [CrossRef]
  2. M. Müller, J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002). [CrossRef]
  3. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005). [CrossRef] [PubMed]
  4. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1959).
  5. S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [CrossRef] [PubMed]
  6. D. Wildanger, R. Medda, L. Kastrup, S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc. 236(1), 35–43 (2009). [CrossRef] [PubMed]
  7. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  8. M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006). [CrossRef] [PubMed]
  9. R. Heintzmann, “Saturated patterned excitation microscopy with two-dimensional excitation patterns,” Micron 34(6–7), 283–291 (2003). [CrossRef] [PubMed]
  10. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005). [CrossRef] [PubMed]
  11. W. P. Beeker, P. Groß, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009). [CrossRef] [PubMed]
  12. V. Raghunathan, E. O. Potma, “Multiplicative and subtractive focal volume engineering in coherent Raman microscopy,” J. Opt. Soc. Am. A 27(11), 2365–2374 (2010). [CrossRef] [PubMed]
  13. H. Kim, G. W. Bryant, S. J. Stranick, “Superresolution four-wave mixing microscopy,” Opt. Express 20(6), 6042–6051 (2012). [CrossRef] [PubMed]
  14. K. M. Hajek, B. Littleton, D. Turk, T. J. McIntyre, H. Rubinsztein-Dunlop, “A method for achieving super-resolved widefield CARS microscopy,” Opt. Express 18(18), 19263–19272 (2010). [CrossRef] [PubMed]
  15. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000). [CrossRef] [PubMed]
  16. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009). [CrossRef] [PubMed]
  17. B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron 38(2), 150–157 (2007). [CrossRef] [PubMed]
  18. C. Heinrich, S. Bernet, M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 84(5), 816–818 (2004). [CrossRef]
  19. S. Chowdhury, A.-H. Dhalla, J. Izatt, “Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples,” Biomed. Opt. Express 3(8), 1841–1854 (2012). [CrossRef] [PubMed]
  20. M. Gu, Advanced Optical Imaging Theory, Springer Series in Optical Sciences (Springer, 2000).
  21. J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited