OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 9912–9919

Asymmetric band-pass plasmonic nanodisk filter with mode inhibition and spectrally splitting capabilities

Guangzhi Zhan, Ruisheng Liang, Haitao Liang, Jie Luo, and Ruitong Zhao  »View Author Affiliations


Optics Express, Vol. 22, Issue 8, pp. 9912-9919 (2014)
http://dx.doi.org/10.1364/OE.22.009912


View Full Text Article

Enhanced HTML    Acrobat PDF (2140 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compact wavelength band-pass filter based on metal-insulator-metal (MIM) nanodisk cavity is proposed and numerically investigated by using Finite-Difference Time-Domain (FDTD) simulations. It is found that the transmission characteristics of the filter can be easily adjusted by changing the geometrical parameters of the radius of the nanodisk and coupling distance between the nanodisk and waveguide. By extending the length of input/output waveguides, the filter shows the resonant mode inhibition function. Basing on this characteristic, a two-port wavelength demultiplexer is designed, which can separate resonant modes inside the nanodisk with high transmission up to 70%. The waveguide filter may become a potential application for the design of devices in highly integrated optical circuits.

© 2014 Optical Society of America

OCIS Codes
(060.4230) Fiber optics and optical communications : Multiplexing
(130.3120) Integrated optics : Integrated optics devices
(140.4780) Lasers and laser optics : Optical resonators
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Plasmonics

History
Original Manuscript: January 20, 2014
Revised Manuscript: April 4, 2014
Manuscript Accepted: April 11, 2014
Published: April 17, 2014

Citation
Guangzhi Zhan, Ruisheng Liang, Haitao Liang, Jie Luo, and Ruitong Zhao, "Asymmetric band-pass plasmonic nanodisk filter with mode inhibition and spectrally splitting capabilities," Opt. Express 22, 9912-9919 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-8-9912


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. T. W. Lee, S. K. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13(24), 9652–9659 (2005). [CrossRef] [PubMed]
  3. B. Wang, G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005). [CrossRef]
  4. Z. Han, E. Forsberg, S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007). [CrossRef]
  5. S. Enoch, R. Quidant, G. Badenes, “Optical sensing based on plasmon coupling in nanoparticle arrays,” Opt. Express 12(15), 3422–3427 (2004). [CrossRef] [PubMed]
  6. W. H. Weber, G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004). [CrossRef]
  7. H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13(26), 10795–10800 (2005). [CrossRef] [PubMed]
  8. B. Wang, G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004). [CrossRef] [PubMed]
  9. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  10. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005). [CrossRef] [PubMed]
  11. C. Janke, J. G. Rivas, P. H. Bolivar, H. Kurz, “All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures,” Opt. Lett. 30(18), 2357–2359 (2005). [CrossRef] [PubMed]
  12. K. Wen, L. Yan, W. Pan, B. Luo, Z. Guo, Y. Guo, “Wavelength demultiplexing structure based on a plasmonic metal–insulator–metal waveguide. Journal of Optics,” J. Opt. 14(7), 075001 (2012). [CrossRef]
  13. T. B. Wang, X. W. Wen, C. P. Yin, H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17(26), 24096–24101 (2009). [CrossRef] [PubMed]
  14. G. Wang, H. Lu, X. Liu, D. Mao, L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19(4), 3513–3518 (2011). [CrossRef] [PubMed]
  15. H. Lu, X. Liu, D. Mao, Y. Gong, G. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett. 36(16), 3233–3235 (2011). [CrossRef] [PubMed]
  16. I. Chremmos, “Magnetic field integral equation analysis of interaction between a surface plasmon polariton and a circular dielectric cavity embedded in the metal,” J. Opt. Soc. Am. A 26(12), 2623–2633 (2009). [CrossRef] [PubMed]
  17. J. Tao, X. G. Huang, J. H. Zhu, “A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators,” Opt. Express 18(11), 11111–11116 (2010). [CrossRef] [PubMed]
  18. F. Hu, H. Yi, Z. Zhou, “Wavelength demultiplexing structure based on arrayed plasmonic slot cavities,” Opt. Lett. 36(8), 1500–1502 (2011). [CrossRef] [PubMed]
  19. F. Moharrami, M. S. Abrishamian, “Plasmonic multi-channel filters with separately tunable pass-bands,” J. Opt. 15(7), 075001 (2013). [CrossRef]
  20. F. Hu, H. Yi, Z. Zhou, “Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities,” Opt. Express 19(6), 4848–4855 (2011). [CrossRef] [PubMed]
  21. J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, S. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16(7), 4888–4894 (2008). [CrossRef] [PubMed]
  22. J. X. Tan, Y. B. Xie, J. W. Dong, H. Z. Wang, “Flat-top transmission band in periodic plasmonic ring resonators,” Plasmonics 7(3), 435–439 (2012). [CrossRef]
  23. V. F. Nezhad, S. Abaslou, M. S. Abrishamian, “Plasmonic band-stop filter with asymmetric rectangular ring for WDM networks,” J. Opt. 15(5), 055007 (2013). [CrossRef]
  24. Z. Yu, R. Liang, P. Chen, Q. Huang, T. Huang, X. Xu, “Integrated Tunable Optofluidics Optical Filter Based on MIM Side-Coupled-Cavity Waveguide,” Plasmonics 7(4), 603–607 (2012). [CrossRef]
  25. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  26. H. Lu, X. Liu, D. Mao, L. Wang, Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18(17), 17922–17927 (2010). [CrossRef] [PubMed]
  27. H. A. Haus, W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991). [CrossRef]
  28. X. Mei, X. Huang, J. Tao, J. Zhu, Y. Zhu, X. Jin, “A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities,” J. Opt. Soc. Am. A 27(12), 2707–2713 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited