OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 9932–9941

Mode competition of two bandedge lasing from dye doped cholesteric liquid crystal laser

Ja-Hon Lin, Po-Yen Chen, and Jin-Jei Wu  »View Author Affiliations

Optics Express, Vol. 22, Issue 8, pp. 9932-9941 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1525 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Mode competition of two-lasing modes at the photonic bandedge from dye-doped cholesteric liquid crystal lasing was studied by the alternation of temperatures. The increase or decrease of the wavelengths from photonic bandedges versus the alternation of temperature is attributed to the variation of helical twist power (HTP) and thus it shows the completely different result by choosing two of different nematic liquid crystals (MDA-981602 and MDA-3970). At certain temperature, the intensity contrast and slope efficiency between long and short emission lasing peaks were dominated from the experienced gain or loss of laser for the position of the photonic bandedge. By the linear combination of these two lasing modes with different emission wavelengths and intensity contrast at distinct temperature, the wide tuning of the output colors can be revealed from the CIE chromaticity diagram and thus it has opportunity to be used in the display technology in the near future.

© 2014 Optical Society of America

OCIS Codes
(140.2050) Lasers and laser optics : Dye lasers
(230.3720) Optical devices : Liquid-crystal devices
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 11, 2014
Revised Manuscript: March 26, 2014
Manuscript Accepted: April 10, 2014
Published: April 17, 2014

Ja-Hon Lin, Po-Yen Chen, and Jin-Jei Wu, "Mode competition of two bandedge lasing from dye doped cholesteric liquid crystal laser," Opt. Express 22, 9932-9941 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Y. Huang, K. Y. Fu, K. Y. Lo, M. S. Tsai, “Bistable transflective cholesteric light shutters,” Opt. Express 11(6), 560–565 (2003). [CrossRef] [PubMed]
  2. F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004). [CrossRef]
  3. M. Iwamoto, C.-X. Wu, O.-Y. Zhong-can, “Separation of chiral phases by compression: kinetic localization of the enantiomers in a monolayer of racemic amphiphiles viewed as mixing cholesteric liquid crystals,” Chem. Phys. Lett. 285(5–6), 306–312 (1998). [CrossRef]
  4. H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal Bragg reflectors,” Adv. Mater. 22(24), 2680–2684 (2010). [CrossRef] [PubMed]
  5. J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994). [CrossRef]
  6. V. I. Kopp, B. Fan, H. K. M. Vithana, A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707–1709 (1998). [CrossRef] [PubMed]
  7. B. Taheri, A. F. Munoz, P. Pallffy-Muhoray, R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 358(1), 73–82 (2001). [CrossRef]
  8. J. H. Lin, J. L. Jhu, S. S. Jyu, T.-C. Lin, Y. Lai, “Characteristics of a low repetition rate passively mode-locked Yb-doped fiber laser in an all-normal dispersion cavity,” Laser Phys. 23(2), 025103 (2013). [CrossRef]
  9. S.-H. Lin, C.-R. Lee, “Novel dye-doped cholesteric liquid crystal cone lasers with various birefringences and associated tunabilities of lasing feature and performance,” Opt. Express 19(19), 18199–18206 (2011). [CrossRef] [PubMed]
  10. H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001). [CrossRef]
  11. S. Furumi, S. Yokoyama, A. Otomo, S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003). [CrossRef]
  12. T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2003).
  13. K. Funamoto, M. Ozaki, K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42(12B), L1523–L1525 (2003). [CrossRef]
  14. Y. Huang, Y. Zhou, C. Doyle, S. T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14(3), 1236–1242 (2006). [CrossRef] [PubMed]
  15. S. M. Morris, A. D. Ford, M. N. Pivnenko, H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97(2), 023103 (2005). [CrossRef]
  16. J.-H. Lin, J.-L. Jhu, S. S. Jyu, T. C. Lin, Y. Lai, “Characteristics of a low repetition rate passively mode-locked Yb-doped fiber laser in an all-normal dispersion cavity,” Laser Phys. 23(2), 025103 (2013). [CrossRef]
  17. G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14(17), 7737–7744 (2006). [CrossRef] [PubMed]
  18. G. Gottarelli, G. P. Spada, “Induced cholesteric mesophases – origin and applications,” Mol. Cryst. Liq. Cryst. 123(1), 377–388 (1985). [CrossRef]
  19. J. Li, S. T. Wu, S. Brugioni, R. Meucci, S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005). [CrossRef]
  20. J. Li, S. Gauzia, S.-T. Wu, “High temperature-gradient refractive index liquid crystals,” Opt. Express 12(9), 2002–2010 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited