OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10105–10118

Multimode regimes in quantum cascade lasers with optical feedback

L. L. Columbo and M. Brambilla  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 10105-10118 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3410 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the instability thresholds of the stationary emission of a quantum cascade laser with optical feedback described by the Lang Kobayashi model. We introduce an exact linear stability analysis and an approximated one for an unipolar lasers, who does not exhibit relaxation oscillations, and investigate the regimes of the emitter beyond the continuous wave instability threshold, depending on the number and density of the external cavity modes. We then show that a unipolar laser with feedback can exhibit coherent multimode oscillations that indicate spontaneous phase-locking.

© 2014 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.3100) Nonlinear optics : Instabilities and chaos
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Nonlinear Optics

Original Manuscript: January 22, 2014
Manuscript Accepted: March 17, 2014
Published: April 21, 2014

Virtual Issues
Physics and Applications of Laser Dynamics (2014) Optics Express

L. L. Columbo and M. Brambilla, "Multimode regimes in quantum cascade lasers with optical feedback," Opt. Express 22, 10105-10118 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994). [CrossRef] [PubMed]
  2. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. Mc Manus, R. Lewicki, M. Pusharsky, G. Wysocki, F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010). [CrossRef]
  3. J. Faist, Quantum Cascade Lasers (Academic, 2013). [CrossRef]
  4. A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77, 053804 (2008). [CrossRef]
  5. C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, F. Capasso, “Mode-locked pulses from mid-infrared quantum cascade lasers,” Opt. Express 17, 12929–12943 (2009). [CrossRef] [PubMed]
  6. S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, H. Linfield, A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics 5, 306–313 (2011). [CrossRef]
  7. A. K. Wójcik, P. Malara, R. Blanchard, T. S. Mansuripur, F. Capasso, A. Belyanin, “Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers,” Appl. Phys. Lett. 103, 231102 (2013). [CrossRef]
  8. N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wójcik, K. B. Crozier, A. Belyanin, F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett. 102, 013901 (2009). [CrossRef] [PubMed]
  9. P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolić, S. P. Khanna, M. Lachab, D. Indjin, Z. Ikonić, P. Harrison, A. D. Rakić, E. H. Linfield, A. G. Davies, “Terahertz imaging through self-mixing in a quantum cascade laser,” Opt. Lett. 36, 2587–2589 (2011). [CrossRef] [PubMed]
  10. Y. L. Lim, P. Dean, M. Nikolić, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonić, P. Harrison, E. Linfield, A. G. Davies, S. J. Wilson, A. D. Rakić, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99, 081108 (2011). [CrossRef]
  11. M. C. Phillips, S. Taubman, “Intracavity sensing via compliance voltage in an external cavity quantum cascade laser,” Opt. Lett. 37, 2664–2666 (2012). [CrossRef] [PubMed]
  12. F. P. Mezzapesa, V. Spagnolo, A. Antonio, G. Scamarcio, “Detection of ultrafast laser ablation using quantum cascade laser-based sensing,” Appl. Phys. Lett. 101, 171101 (2012). [CrossRef]
  13. R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79, 2526–2528 (2001). [CrossRef]
  14. D. M. Kane, K. A. Shore, Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Diode Lasers (John Wiley, 2005). [CrossRef]
  15. J. Helms, K. Petermann, “A simple analytic expression for the stable operation range of laser diodes with optical feedback,” IEEE J. Quantum Electron. 26, 833–836 (1990). [CrossRef]
  16. D. Weidmann, K. Smith, B. Ellison, “Experimental investigation of high-frequency noise and optical feedback effects using a 9.7 μm continuous-wave distributed-feedback quantum-cascade laser,” Appl. Opt. 46, 947–953 (2007). [CrossRef] [PubMed]
  17. F. P. Mezzapesa, L. L. Columbo, M. Brambilla, M. Dabbicco, S. Borri, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, “Intrinsic stability of quantum cascade lasers against optical feedback,” Opt. Express 21, 13748–13757 (2013). [CrossRef] [PubMed]
  18. R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980). [CrossRef]
  19. T. Gensty, W. Elsäßer, C. Mann, “Intensity noise properties of quantum cascade lasers,” Opt. Express 13, 2032–2039 (2005). [CrossRef] [PubMed]
  20. M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, H. Kan, “Theory of the intrinsic linewidth of quantum cascade lasers: hidden reason for the narrow linewidth and line broadening by thermal photons,” IEEE J. Quantum Electron. 44, 12–29 (2008). [CrossRef]
  21. J. Staden, T. Gensty, W. Elsäßer, G. Giuliani, C. Mann, “Measurements of the α factor of a distributed-feedback quantum cascade laser by an optical feedback self-mixing technique,” Opt. Lett. 31, 2574–2576 (2006). [CrossRef]
  22. R. P. Green, J. H. Xu, L. Mahler, A. Tredicucci, F. Beltram, G. Giuliani, H. E. Beere, D. A. Ritchie, “Linewidth enhancement factor of terahertz quantum cascade lasers,” Appl. Phys. Lett. 92, 071106 (2008). [CrossRef]
  23. A. D. Rakić, T. Taimre, K. Bertling, Y. L. Lim, P. Dean, D. Indjin, Z. Ikonić, P. Harrison, A. Valavanis, S. P. Khanna, M. Lachab, S. J. Wilson, E. H. Linfield, A. G. Davies, “Swept-frequency feedback interferometry using terahertz frequency QCLs: a method for imaging and materials analysis,” Opt. Express 21, 22194–22205 (2013). [CrossRef]
  24. F. Mezzapesa, Internal CNR-IFN report (2013).
  25. A. M. Levine, G. H. M. van Tartwijk, D. Lenstra, T. Erneux, “Diode lasers with optical feedback: Stability of the maximum gain mode,” Phys. Rev. A 52, 3436–3439 (1995). [CrossRef]
  26. T. Erneux, V. Kovanis, A. Gavrielides, “Nonlinear dynamics of an injected quantum cascade laser,” Phys. Rev. E 88, 032907 (2013). [CrossRef]
  27. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in Fortran 77: The Art of Scientific Computing (Academic, 1992).
  28. L. Columbo, M. Brambilla, M. Dabbicco, G. Scamarcio, “Self-mixing in multi-transverse mode semiconductor lasers: model and potential application to multi-parametric sensing,” Opt. Express 20, 6286–6305 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited