OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10139–10150

Enhancing optofluidic actuation of micro-objects by tagging with plasmonic nanoparticles

Julien Burgin, Satyabrata Si, Marie-Hélène Delville, and Jean-Pierre Delville  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 10139-10150 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2219 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report experimentally and theoretically on the significant exaltation of optical forces on microparticles when they are partially coated by metallic nanodots and shined with laser light within the surface plasmon resonance. Optical forces on both pure silica particles and silica-gold raspberries are characterized using an optical chromatography setup to measure the variations of the Stokes drag versus laser beam power. Results are compared to the Mie theory prediction for both pure dielectric particles and core-shell ones with a shell described as a continuous dielectric-metal composite of dielectric constant determined from the Maxwell-Garnett approach. The observed quantitative agreement demonstrates that radiation pressure forces are directly related to the metal concentration on the microparticle surface and that metallic nanodots increase the magnitude of optical forces compared to pure dielectric particles of the same overall size, even at very low metal concentration. Behaving as “micro-sized nanoparticles”, the benefit of microparticles coated with metallic nanodots is thus twofold: it significantly enhances optofluidic manipulation and motion at the microscale, and brings nanometric optical, chemical or biological capabilities to the microscale.

© 2014 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(280.7250) Remote sensing and sensors : Velocimetry
(290.4020) Scattering : Mie theory
(160.4236) Materials : Nanomaterials
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: December 16, 2013
Revised Manuscript: March 3, 2014
Manuscript Accepted: March 5, 2014
Published: April 21, 2014

Julien Burgin, Satyabrata Si, Marie-Hélène Delville, and Jean-Pierre Delville, "Enhancing optofluidic actuation of micro-objects by tagging with plasmonic nanoparticles," Opt. Express 22, 10139-10150 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997). [CrossRef] [PubMed]
  2. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  3. A. Jonás, P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008). [CrossRef] [PubMed]
  4. A. A. Lall, A. Terray, S. J. Hart, “On-the-fly cross flow laser guided separation of aerosol particles based on size, refractive index and density-theoretical analysis,” Opt. Express 18(26), 26775–26790 (2010). [CrossRef] [PubMed]
  5. S. J. Hart, A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett. 83(25), 5316–5318 (2003). [CrossRef]
  6. S. J. Hart, A. V. Terray, J. Arnold, “Particle separation and collection using an optical chromatographic filter,” Appl. Phys. Lett. 91(17), 171121 (2007). [CrossRef]
  7. T. Kaneta, Y. Ishidzu, N. Mishima, T. Imasaka, “Theory of optical chromatography,” Anal. Chem. 69(14), 2701–2710 (1997). [CrossRef] [PubMed]
  8. R. W. Bowman, M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013). [CrossRef] [PubMed]
  9. R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006). [CrossRef] [PubMed]
  10. M. P. MacDonald, G. C. Spalding, K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003). [CrossRef] [PubMed]
  11. M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12(4), 1923–1927 (2012). [CrossRef] [PubMed]
  12. A. S. Zelenina, R. Quidant, G. Badenes, M. Nieto-Vesperinas, “Tunable optical sorting and manipulation of nanoparticles via plasmon excitation,” Opt. Lett. 31(13), 2054–2056 (2006). [CrossRef] [PubMed]
  13. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986). [CrossRef] [PubMed]
  14. K. Svoboda, S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994). [CrossRef] [PubMed]
  15. M. J. Guffey, R. L. Miller, S. K. Gray, N. F. Scherer, “Plasmon-driven selective deposition of au bipyramidal nanoparticles,” Nano Lett. 11(10), 4058–4066 (2011). [CrossRef] [PubMed]
  16. J. R. Moffitt, Y. R. Chemla, S. B. Smith, C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008). [CrossRef] [PubMed]
  17. M. Dienerowitz, M. Mazilu, K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 021875 (2008). [CrossRef]
  18. H. Zhang, K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008). [CrossRef] [PubMed]
  19. A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987). [CrossRef] [PubMed]
  20. A. Terray, J. D. Taylor, S. J. Hart, “Cascade optical chromatography for sample fractionation,” Biomicrofluidics 3(4), 044106 (2009). [CrossRef] [PubMed]
  21. J. S. Y. Kim, J. D. Taylor, H. D. Ladouceur, S. J. Hart, A. Terray, “Radiation pressure efficiency measurements of nanoparticle coated microspheres,” Appl. Phys. Lett. 103(23), 234101 (2013). [CrossRef]
  22. R. R. Agayan, T. Horvath, B. H. McNaughton, J. N. Anker, R. Kopelman, “Optical manipulation of metal-silica hybrid nanoparticles,” Proc. SPIE 5514, 502–513 (2004). [CrossRef]
  23. M. Rodriguez-Otazo, A. Augier-Calderin, J. P. Galaup, “Nanometer gold–silica composite particles manipulated by optical tweezers,” Opt. Commun. 282(14), 2921–2929 (2009). [CrossRef]
  24. I. Choi, H. D. Song, S. Lee, Y. I. Yang, T. Kang, J. Yi, “Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex,” J. Am. Chem. Soc. 134(29), 12083–12090 (2012). [CrossRef] [PubMed]
  25. S. Balint, M. P. Kreuzer, S. Rao, G. Badenes, P. Miskovsky, D. Petrov, “Simple route for preparing optically trappable probes for surface-enhanced Raman scattering,” J. Phys. Chem. C 113(41), 17724–17729 (2009). [CrossRef]
  26. R. Tamoto, S. Lecomte, S. Si, S. Moldovan, O. Ersen, M. H. Delville, R. Oda, “Gold nanoparticle deposition on silica nanohelices: a new controllable 3d substrate in aqueous suspension for optical sensing,” J. Phys. Chem. C 116(43), 23143–23152 (2012). [CrossRef]
  27. S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express 19(10), 9607–9616 (2011). [CrossRef] [PubMed]
  28. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007). [CrossRef] [PubMed]
  29. M. R. Jones, K. D. Osberg, R. J. Macfarlane, M. R. Langille, C. A. Mirkin, “Templated techniques for the synthesis and assembly of plasmonic nanostructures,” Chem. Rev. 111(6), 3736–3827 (2011). [CrossRef] [PubMed]
  30. A. Tao, S. Habas, P. Yang, “Shape control of colloidal metal nanocrystals,” Small 4(3), 310–325 (2008). [CrossRef]
  31. I. Pastoriza-Santos, D. Gomez, J. Pérez-Juste, L. M. Liz-Marzán, P. Mulvaney, “Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach,” Phys. Chem. Chem. Phys. 6, 5056–5060 (2004). [CrossRef]
  32. T. Pham, J. B. Jackson, N. J. Halas, T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18(12), 4915–4920 (2002). [CrossRef]
  33. D. Blair, E. Dufresne, “The matlab particle tracking code repository,” http://physics.georgetown.edu/matlab/index.html .
  34. K. Nozawa, H. Gailhanou, L. Raison, P. Panizza, H. Ushiki, E. Sellier, J. P. Delville, M. H. Delville, “Smart control of monodisperse Stöber silica particles: effect of reactant addition rate on growth process,” Langmuir 21(4), 1516–1523 (2005). [CrossRef] [PubMed]
  35. K. Nozawa, M. H. Delville, H. Ushiki, P. Panizza, J. P. Delville, “Growth of monodisperse mesoscopic metal-oxide colloids under constant monomer supply,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1 Pt 1), 011404 (2005). [CrossRef] [PubMed]
  36. G. Frens, “Controlled Nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature 241, 20–22 (1973).
  37. S. Basu, S. K. Ghosh, S. Kundu, S. Panigrahi, S. Praharaj, S. Pande, S. Jana, T. Pal, “Biomolecule induced nanoparticle aggregation: effect of particle size on interparticle coupling,” J. Colloid Interface Sci. 313(2), 724–734 (2007). [CrossRef] [PubMed]
  38. S. Pramanik, P. Banerjee, A. Sarkar, S. C. Bhattacharya, “Size-dependent interaction of gold nanoparticles with transport protein: a spectroscopic study,” J. Lumin. 128(12), 1969–1974 (2008). [CrossRef]
  39. K. F. Ren, G. Gréhan, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108(4-6), 343–354 (1994). [CrossRef]
  40. Y. Harada, T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996). [CrossRef]
  41. C. F. Bohren and D. F. Hufman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  42. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992). [CrossRef] [PubMed]
  43. C. Mätzler, “Matlab functions for mie scattering and absorption,” (Research Report, Institut fur Angewandte Physik, University of Bern, Switzerland, 2002). http://www.iapmw.unibe.ch/teaching/vorlesungen/radiative_transfer/HS2012/Mie_Version2.pdf .
  44. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  45. A. N. Bashkatov, E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE 5068, 393–395 (2003). [CrossRef]
  46. F. Garcia-Santamaria, H. Miguez, M. Ibisate, F. Meseguer, C. Lopez, “Refractive index properties of calcined silica submicrometer spheres,” Langmuir 18(5), 1942–1944 (2002). [CrossRef]
  47. Y. Seol, A. E. Carpenter, T. T. Perkins, “Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating,” Opt. Lett. 31(16), 2429–2431 (2006). [CrossRef] [PubMed]
  48. P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011). [CrossRef] [PubMed]
  49. Y. Hu, R. C. Fleming, R. A. Drezek, “Optical properties of gold-silica-gold multilayer nanoshells,” Opt. Express 16(24), 19579–19591 (2008). [CrossRef] [PubMed]
  50. S. C. Padmanabhan, J. McGrath, M. Bardosova, M. E. Pemble, “A facile method for the synthesis of highly monodisperse silica@gold@silica core–shell–shell particles and their use in the fabrication of three-dimensional metallodielectric photonic crystals,” J. Mater. Chem. 22(24), 11978–11987 (2012). [CrossRef]
  51. M. T. Kumara, N. Srividya, S. Muralidharan, B. C. Tripp, “Bioengineered flagella protein nanotubes with cysteine loops: self-assembly and manipulation in an optical trap,” Nano Lett. 6(9), 2121–2129 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited