OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10151–10164

Damage morphology change condition and thermal accumulation effect on high-reflection coatings at 1064nm

Zhichao Liu, Jin Luo, Yi Zheng, Ping Ma, Zhe Zhang, Yaowei Wei, Feng Pan, and Songlin Chen  »View Author Affiliations


Optics Express, Vol. 22, Issue 9, pp. 10151-10164 (2014)
http://dx.doi.org/10.1364/OE.22.010151


View Full Text Article

Enhanced HTML    Acrobat PDF (4353 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The damage conversion behavior of high-reflection coatings under multiple shot of 1064nm nanosecond pulse laser has been investigated. The mechanism of initiation and evolution law of multi-shot damage has been revealed by use of surface profiler and focus ion beam with SEM. The scald damage tends to become delaminate damage under some certain condition. Huge experiments supports that this morphology change condition has a close connection with scald initial fluence, scald size, subsequent fluence and shot number. The relationship among these factors is for the first time achieved to offer the “safety lines” for components. The thermal accumulation effect on the decline of damage threshold under multi-shot has been studied in theory and verified experimentally. In addition, a theory-based formula is used to fit the experiment data for further prediction of thin film life-time.

© 2014 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(310.1620) Thin films : Interference coatings

ToC Category:
Thin Films

History
Original Manuscript: December 30, 2013
Revised Manuscript: February 19, 2014
Manuscript Accepted: April 11, 2014
Published: April 21, 2014

Citation
Zhichao Liu, Jin Luo, Yi Zheng, Ping Ma, Zhe Zhang, Yaowei Wei, Feng Pan, and Songlin Chen, "Damage morphology change condition and thermal accumulation effect on high-reflection coatings at 1064nm," Opt. Express 22, 10151-10164 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-9-10151


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Milam, R. A. Bradbury, M. Bass, “Laser damage threshold for dielectric coatings as determined by inclusions,” Appl. Phys. Lett. 23(12), 654–657 (1973). [CrossRef]
  2. E. S. Bliss, D. Milam, R. A. Bradbury, “Dielectric mirror damage by laser radiation over a range of pulse durations and beam radii,” Appl. Opt. 12(4), 677–689 (1973). [CrossRef] [PubMed]
  3. L. J. Shaw-Klein, S. J. Burns, S. D. Jacobs, “Model for laser damage dependence on thin-film morphology,” Appl. Opt. 32(21), 3925–3929 (1993). [CrossRef] [PubMed]
  4. F. Y. Génin, C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996). [CrossRef]
  5. D. Reicher, P. Black, K. Jungling, “Defect formation in hafnium dioxide thin films,” Appl. Opt. 39(10), 1589–1599 (2000). [CrossRef] [PubMed]
  6. J.-Y. Natoli, L. Gallais, H. Akhouayri, C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41(16), 3156–3166 (2002). [CrossRef] [PubMed]
  7. L. Gallais, J. Capoulade, J.-Y. Natoli, M. Commandré, M. Cathelinaud, C. Koc, M. Lequime, “Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering,” Appl. Opt. 47(13), C107–C113 (2008). [CrossRef] [PubMed]
  8. D. Patel, P. Langston, A. Markosyan, E. M. Krous, B. Langdon, F. Furch, B. Reagan, R. Route, M. M. Fejer, J. J. Rocca, C. S. Menoni, “SiO2/HfO2 multilayers: impact of process parameters and stack geometry on the optical and structural properties,” Proc. SPIE 7132, 71320L (2008). [CrossRef]
  9. X. Liu, Y. Zhao, D. Li, G. Hu, Y. Gao, Z. Fan, J. Shao, “Characteristics of plasma scalds in multilayer dielectric films,” Appl. Opt. 50(21), 4226–4231 (2011). [CrossRef] [PubMed]
  10. A. Melninkaitis, T. Tolenis, L. Mažulė, J. Mirauskas, V. Sirutkaitis, B. Mangote, X. Fu, M. Zerrad, L. Gallais, M. Commandré, S. Kičas, R. Drazdys, “Characterization of zirconia- and niobia-silica mixture coatings produced by ion-beam sputtering,” Appl. Opt. 50(9), C188–C196 (2011). [CrossRef] [PubMed]
  11. L. Gallais, B. Mangote, M. Zerrad, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, V. Sirutkaitis, “Laser-induced damage of hafnia coatings as a function of pulse duration in the femtosecond to nanosecond range,” Appl. Opt. 50(9), C178–C187 (2011). [CrossRef] [PubMed]
  12. X. Liu, Y. Zhao, Y. Gao, D. Li, G. Hu, M. Zhu, Z. Fan, J. Shao, “Investigations on the catastrophic damage in multilayer dielectric films,” Appl. Opt. 52(10), 2194–2199 (2013). [CrossRef] [PubMed]
  13. M. F. Koldunov, A. A. Manenkov, I. L. Pocotilo, “Multishot laser damage in transparent solids: theory of accumulation effect,” Proc. SPIE 2428, 653–667 (1995). [CrossRef]
  14. F. Y. Génin, C. J. Stolz, M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2-SiO2 multilayer mirror and polarizer coatings,” Proc. SPIE 2966, 273–282 (1997). [CrossRef]
  15. A. Melninkaitis, D. Miksys, R. Grigonis, V. Sirutkaitis, D. Tumosa, G. Skokov, D. Kuzma, “Multiple pulse laser-induced damage of antireflection coated lithium triborate,” Proc. SPIE 5963, 59631I (2005). [CrossRef]
  16. P. Allenspacher, W. Riede, D. Wernham, A. Capanni, F. Era, “Vacuum laser damage test bench,” Proc. SPIE 5991, 599128 (2005). [CrossRef]
  17. M. Mero, L. A. Emmert, W. Rudolph, “The role of native and photoinduced defects in the multi-pulse subpicosecond damage behavior of oxide films,” Proc. SPIE 7132, 713209 (2008). [CrossRef]
  18. A. Ciapponi, P. Allenspacher, W. Riede, J. Herringer, J. Arenberg, “S-on-1 testing of AR and HR designs at 1064nm,” Proc. SPIE 7842, 78420J (2010). [CrossRef]
  19. Z. Y. Li, C. F. Li, J. P. Guo, “Multiple pulse laser damage to thin-film optical coating,” Proc. SPIE 1519, 374–379 (1991). [CrossRef]
  20. K. Mann, B. Granitza, E. Eva, “Multiple-pulse damage thresholds of optical components for excimer lasers,” Proc. SPIE 2966, 496–504 (1997). [CrossRef]
  21. X. Fu, A. Melnikaitis, L. Gallais, S. Kiáčas, R. Drazdys, V. Sirutkaitis, M. Commandré, “Investigation of the distribution of laser damage precursors at 1064 nm, 12 ns on Niobia-Silica and Zirconia-Silica mixtures,” Opt. Express 20(23), 26089–26098 (2012). [CrossRef] [PubMed]
  22. H. Jiao, T. Ding, Q. Zhang, “Comparative study of laser induced damage of HfO2/SiO2 and TiO2/SiO2 mirrors at 1064 nm,” Opt. Express 19(5), 4059–4066 (2011). [CrossRef] [PubMed]
  23. L. Gallais, J. Y. Natoli, C. Amra, “Statistical study of single and multiple pulse laser-induced damage in glass,” Opt. Express 10(25), 1465–1477 (2002). [CrossRef]
  24. J. W. Arenberg, “Life testing for laser optics: a first look,” Proc. SPIE 7504, 75041I (2009). [CrossRef]
  25. J. Arenberg, W. Riede, A. Ciapponi, P. Allenspacher, J. Herringer, “An empirical investigation of the laser survivability curve,” Proc. SPIE 7842, 78421B (2010). [CrossRef]
  26. L. Sheehan, M. Kozlowski, B. Tench, “Full aperture laser conditioning of multilayer mirrors and polarizers,” Proc. SPIE 2633, 457–463 (1997). [CrossRef]
  27. H. Bercegol, “What is laser conditioning: a review focused on dielectric multilayers,” Proc. SPIE 3578, 421–426 (1998).
  28. C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, J. Hue, “A study of laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 3578, 144–153 (1999). [CrossRef]
  29. L. Lamaignère, V. Cavarro, C. Allais, D. Bernardino, M. Josse, H. Bercegol, “Time-resolved measurements of reflectivity, plasma formation and damage of Hafnia/Silica multilayers mirrors at 1064nm,” Proc. SPIE 4679, 410–419 (2002). [CrossRef]
  30. H. Qi, K. Yi, H. Yu, Y. Cui, D. Li, Z. Gao, J. Shao, Z. Fan, “Laser induced damage of multilayer high-reflectance coatings for 248nm,” Proc. SPIE 6720, 67200W (2007). [CrossRef]
  31. Q. Zhao, Z. L. Wu, M. Thomsen, Y. Han, Z. Fan, “Interfacial effects on the transient temperature rise of multilayer coatings induced by a short-pulse laser irradiation,” Proc. SPIE 3244, 491–498 (1998). [CrossRef]
  32. M. Commandré, G. Demésy, X. Fu, L. Gallais, “Three-dimensional multiphysical model for the study of photo-induced thermal effects in laser damage phenomena,” Proc. SPIE 7842, 78420Q (2010). [CrossRef]
  33. B. Wang, H. Zhang, Y. Qin, X. Wang, X. Ni, Z. Shen, J. Lu, “Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers,” Appl. Opt. 50(20), 3435–3441 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited