OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10191–10201

Temporal and spectral structure of the infrared pulse during the high order harmonic generation

W. Holgado, B. Alonso, J. San Román, and I. J. Sola  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 10191-10201 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2253 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present, for the first time, the complete pulse characterization of the infrared pulse after generating harmonics. A systematic study of the high harmonic generation process, and the generating infrared pulse characterization, has been done by changing the focus-gas-jet relative position. We have concluded, supported by nonlinear propagation simulations, that there is a correlation between the spectral and temporal nonlinear evolution of the infrared generating field and the structures shown in the harmonic signal. We have identified two different pressure regimes: the low pressure regime, characterized by the effects produced by the plasma generated by the infrared pulse, and the high pressure regime where the plasma and the Kerr effect generated by the infrared field are both present. These observations highlight the important role played by the nonlinear propagation of the generating field in the high harmonic generation context.

© 2014 Optical Society of America

OCIS Codes
(190.4160) Nonlinear optics : Multiharmonic generation
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.5520) Ultrafast optics : Pulse compression
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Nonlinear Optics

Original Manuscript: February 12, 2014
Revised Manuscript: March 13, 2014
Manuscript Accepted: March 13, 2014
Published: April 21, 2014

W. Holgado, B. Alonso, J. San Román, and I. J. Sola, "Temporal and spectral structure of the infrared pulse during the high order harmonic generation," Opt. Express 22, 10191-10201 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. McIntyre, K. Boyer, C. K. Rhodes, “Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases,” J. Opt. Soc. Am. B 4, 595–601 (1987). [CrossRef]
  2. M. Protopapas, C. H. Keitel, P. L. Knight, “Atomic physics with super-high intensity lasers,” Rep. Prog. Phys. 60, 389–486 (1997). [CrossRef]
  3. P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993). [CrossRef] [PubMed]
  4. K. J. Schafer, B. Yang, L. F. DiMauro, K. C. Kulander, “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett. 70, 1599–1602 (1993). [CrossRef] [PubMed]
  5. A. Rundquist, C. G. Durfee, Z. H. Chang, C. Herne, S. Backus, M. M. Murnane, H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412–1414 (1998). [CrossRef] [PubMed]
  6. P. Ceccherini, A. Boscolo, L. Poletto, G. Tondello, P. Villoresi, C. Altucci, R. Bruzzese, C. De Lisio, M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, “Gas medium ionization and harmonic wavelength tunability in high-order harmonic generation with ultrashort laser pulses,” Laser and Particle Beams 18, 477–482 (2000). [CrossRef]
  7. F. Zhong, J. Deng, X. Hu, Z. Li, Z. Zhang, Z. Xu, “The effect of ionization of gases on the high harmonic splitting,” Phys. Lett. A 278, 35–43 (2000). [CrossRef]
  8. D. S. Steingrube, T. Vockerodt, E. Schulz, U. Morgner, M. Kovačev, “Phase matching of high-order harmonics in a semi-infinite gas cell,” Phys. Rev. A 80, 043819 (2009). [CrossRef]
  9. W. Cao, G. Laurent, C. Jin, H. Li, Z. Wang, C. D. Lin, I. Ben-Itzhak, C. L. Cocke, “Spectral splitting and quantum path study of high-harmonic generation from a semi-infinite gas cell,” J. Phys. B 45, 074013 (2012). [CrossRef]
  10. J. C. Painter, M. Adams, N. Brimhall, E. Christensen, G. Giraud, N. Powers, M. Turner, M. Ware, J. Peatross, “Direct observation of laser filamentation in high-order harmonic generation,” Opt. Lett. 31, 3471–3473 (2006). [CrossRef] [PubMed]
  11. Y. Tamaki, J. Itatani, Y. Nagata, M. Obara, K. Midorikawa, “Highly efficient, phase-matched high-harmonic generation by a self-guided laser beam,” Phys. Rev. Lett. 82, 1422–1426 (1999). [CrossRef]
  12. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20, 73–75 (1995).
  13. A. Couairon, A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007). [CrossRef]
  14. J. Odhner, R. J. Levis, “Direct phase and amplitude characterization of femtosecond laser pulses undergoing filamentation in air,” Opt. Lett. 37, 1775–1777 (2012). [CrossRef] [PubMed]
  15. S. Minardi, A. Gopal, A. Couairon, G. Tamoašuskas, R. Piskarskas, A. Dubietis, P. Di Trapani, “Accurate retrieval of pulse-splitting dynamics of a femtosecond filament in water by time-resolved shadowgraphy,” Opt. Lett. 34, 3020–3022 (2009). [CrossRef] [PubMed]
  16. B. Alonso, I. J. Sola, J. San Román, O. Varela, L. Roso, “Spatiotemporal evolution of light during propagation in filamentation regime,” J. Opt. Soc. Am. B 28, 1807–1816 (2011). [CrossRef]
  17. S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhanvoronkov, G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006). [CrossRef]
  18. C. Brée, A. Demircan, S. Skupin, L. Bergé, G. Steinmeyer, “Plasma induced pulse breaking in filamentary self-compression,” Las. Phys. 20, 1107–1113 (2010). [CrossRef]
  19. B. Alonso, I. J. Sola, O. Varela, J. Hernández-Toro, C. Méndez, J. San Román, A. Zaïr, L. Roso, “Spatiotemporal amplitude-and-phase reconstruction by Fourier-transform of interference spectra of high-complex beams,” J. Opt. Soc. Am. B 27, 933–940 (2010). [CrossRef]
  20. We estimate the intensity at the focus by doing linear Gaussian propagation. This estimation is clearly overestimating the intensity because assume perfect Gaussian spatial shape, aberration free focusing and linear propagation. Any of this effects will deteriorate the focusing process producing a bigger focal spot and a lower intensity.
  21. P. O’Shea, M. Kimmel, X. Gu, R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26, 932–934 (2001). [CrossRef]
  22. L. Lepetit, G. Cheriaux, M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995). [CrossRef]
  23. A. Dalgarno, A.E. Kingston, “The refractive indices and Verdet constants of the inert gases,” Proc. Roy. Soc. A 259, 424–429 (1960). [CrossRef]
  24. A. Borzsonyi, Z. Heiner, A.P. Kovacs, M. P. Kalashnikov, K. Osvay, “Measurement of pressure dependent nonlinear refractive index of inert gases,” Opt. Express 18, 25847–25855 (2010). [CrossRef] [PubMed]
  25. M. Mlejnek, E.M. Wright, J.V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382384 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited