OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10233–10238

Accuracy improvement of quantitative analysis in laser-induced breakdown spectroscopy using modified wavelet transform

X. H. Zou, L. B. Guo, M. Shen, X. Y. Li, Z. Q. Hao, Q. D. Zeng, Y. F. Lu, Z. M. Wang, and X. Y. Zeng  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 10233-10238 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1437 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A modified algorithm of background removal based on wavelet transform was developed for spectrum correction in laser-induced breakdown spectroscopy (LIBS). The optimal type of wavelet function, decomposition level and scaling factor γ were determined by the root-mean-square error of calibration (RMSEC) of the univariate regression model of the analysis element, which is considered as the optimization criteria. After background removal by this modified algorithm with RMSEC, the root-mean-square error of cross-validation (RMSECV) and the average relative error (ARE) criteria, the accuracy of quantitative analysis on chromium (Cr), vanadium (V), cuprum (Cu), and manganese (Mn) in the low alloy steel was all improved significantly. The results demonstrated that the algorithm developed is an effective pretreatment method in LIBS to significantly improve the accuracy in the quantitative analysis.

© 2014 Optical Society of America

OCIS Codes
(100.7410) Image processing : Wavelets
(160.3900) Materials : Metals
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: March 3, 2014
Revised Manuscript: April 11, 2014
Manuscript Accepted: April 14, 2014
Published: April 21, 2014

X. H. Zou, L. B. Guo, M. Shen, X. Y. Li, Z. Q. Hao, Q. D. Zeng, Y. F. Lu, Z. M. Wang, and X. Y. Zeng, "Accuracy improvement of quantitative analysis in laser-induced breakdown spectroscopy using modified wavelet transform," Opt. Express 22, 10233-10238 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. B. Lee, J. Y. Wu, Y. I. Lee, J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39(1), 27–97 (2004). [CrossRef]
  2. Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. (2014).
  3. L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013). [CrossRef] [PubMed]
  4. P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429(2), 269–278 (2001). [CrossRef]
  5. L. Dudragne, P. Adam, J. Amouroux, “Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detection of fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52(10), 1321–1327 (1998). [CrossRef]
  6. J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier Science, 2007).
  7. Z. Wang, Z. Y. Hou, S. L. Lui, D. Jiang, J. M. Liu, Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(S6), A1011–A1018 (2012). [CrossRef]
  8. T. Fujimoto, Plasma Spectroscopy (Clarendon, 2004).
  9. X. G. Shao, A. K. M. Leung, F. T. Chau, “Wavelet: a new trend in chemistry,” Acc. Chem. Res. 36(4), 276–283 (2003). [CrossRef] [PubMed]
  10. C. M. Galloway, E. C. Le Ru, P. G. Etchegoin, “An iterative algorithm for background removal in spectroscopy by wavelet transforms,” Appl. Spectrosc. 63(12), 1370–1376 (2009). [CrossRef] [PubMed]
  11. X. G. Ma, Z. X. Zhang, “Application of wavelet transform to background correction in inductively coupled plasma atomic emission spectrometry,” Anal. Chim. Acta 485(2), 233–239 (2003). [CrossRef]
  12. C. X. Ma, X. G. Shao, “Continuous wavelet transform applied to removing the fluctuating background in near-infrared spectra,” J. Chem. Inf. Comput. Sci. 44(3), 907–911 (2004). [CrossRef] [PubMed]
  13. J. Schlenke, L. Hildebrand, J. Moros, J. J. Laserna, “Adaptive approach for variable noise suppression on laser-induced breakdown spectroscopy responses using stationary wavelet transform,” Anal. Chim. Acta 754, 8–19 (2012). [CrossRef] [PubMed]
  14. B. Zhang, L. X. Sun, H. B. Yu, Y. Xin, Z. B. Cong, “Wavelet denoising method for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 28(12), 1884–1893 (2013). [CrossRef]
  15. T. B. Yuan, Z. Wang, Z. Li, W. D. Ni, J. M. Liu, “A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using Laser-induced breakdown spectroscopy,” Anal. Chim. Acta 807, 29–35 (2014). [CrossRef] [PubMed]
  16. X. G. Shao, W. S. Cai, Z. X. Pan, “Wavelet transform and its applications in high performance liquid chromatography (HPLC) analysis,” Chemom. Intell. Lab. Syst. 45(1–2), 249–256 (1999). [CrossRef]
  17. S. G. Mallat, “A theory of multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. 11(7), 674–693 (1989). [CrossRef]
  18. S. G. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way (Academic, 2008).
  19. X. G. Shao, L. M. Shao, G. W. Zhao, “Extraction of extended X-ray absorption fine structure information from the experimental data using the wavelet transform,” Anal. Commun. 35(4), 135–137 (1998). [CrossRef]
  20. D. Chen, X. G. Shao, B. Hu, Q. D. Su, “A background and noise elimination method for quantitative calibration of near infrared spectra,” Anal. Chim. Acta 511(1), 37–45 (2004). [CrossRef]
  21. I. Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, 1992).
  22. A. E. Kramida Y. Ralchenko, J. Reader, and NIST ASD Team, “NIST Atomic Spectra Database (version 5.1)” (National Institute of Standards and Technology, 2013), http://physics.nist.gov/asd .
  23. L. X. Sun, H. B. Yu, “Automatic estimation of varying continuum background emission in laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 64(3), 278–287 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited