OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10262–10269

Novel wavelength conversion with nanophotonic droplet consisting of coupled quantum dots

Naoya Tate, Wataru Nomura, Tadashi Kawazoe, and Motoichi Ohtsu  »View Author Affiliations


Optics Express, Vol. 22, Issue 9, pp. 10262-10269 (2014)
http://dx.doi.org/10.1364/OE.22.010262


View Full Text Article

Enhanced HTML    Acrobat PDF (2386 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The concept of nanophotonic droplets, which are individual spherical polymer structures containing accurately coupled heterogeneous quantum dots, has been previously demonstrated. Such combinations are theoretically promising for their ability to induce novel optical functions. In this paper, we focus on the implementation of wavelength conversion as one of the fundamental optical functions of nanophotonic droplets. A novel mechanism involved in the formation of nanophotonic droplets and results of experimental verification of wavelength conversion using formed nanophotonic droplets are described. By a quantitative comparison with a corresponding sample consisting of randomly dispersed quantum dots, the effectiveness of proposal was successfully demonstrated.

© 2014 Optical Society of America

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(220.4241) Optical design and fabrication : Nanostructure fabrication
(230.7405) Optical devices : Wavelength conversion devices

ToC Category:
Spectroscopy

History
Original Manuscript: March 7, 2014
Revised Manuscript: April 11, 2014
Manuscript Accepted: April 14, 2014
Published: April 21, 2014

Citation
Naoya Tate, Wataru Nomura, Tadashi Kawazoe, and Motoichi Ohtsu, "Novel wavelength conversion with nanophotonic droplet consisting of coupled quantum dots," Opt. Express 22, 10262-10269 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-9-10262


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Swanson, G. M. Wallraff, J. P. Chen, W. Zhang, L. D. Bozano, K. R. Carter, J. R. Salem, R. Villa, J. C. Scott, “Stable and efficient fluorescent red and green dyes for external and internal conversion of blue OLED emission,” Chem. Mater. 15(12), 2305–2312 (2003). [CrossRef]
  2. H. Song, S. Lee, “Red light emitting solid state hybrid quantum dot–near-UV GaN LED devices,” Nanotechnology 18(25), 255202 (2007). [CrossRef]
  3. Y.-L. Lee, B.-M. Huang, H.-T. Chien, “Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications,” Chem. Mater. 20(22), 6903–6905 (2008). [CrossRef]
  4. C. X. Guo, H. B. Yang, Z. M. Sheng, Z. S. Lu, Q. L. Song, C. M. Li, “Layered graphene/quantum dots for photovoltaic devices,” Angew. Chem. Int. Ed. Engl. 49(17), 3014–3017 (2010). [CrossRef] [PubMed]
  5. S. Sygletos, R. Bonk, T. Vallaitis, A. Marculescu, P. Vorreau, J. Li, R. Brenot, F. Lelarge, G.-H. Duan, W. Freude, J. Leuthold, “Filter assisted wavelength conversion with quantum-Dot SOAs,” J. Lightwave Technol. 28(6), 882–897 (2010). [CrossRef]
  6. Y. Yonezawa, H. Kurokawa, T. Sato, “Excitation energy transfer between J-aggregates of cyanine dyes in mixed monolayer assemblies,” J. Lumin. 54(5), 285–295 (1993). [CrossRef]
  7. M. Watanabe, M. Herren, M. Morita, “Picosecond luminescence and excitation energy transfer in J- and H-aggregates of cyamine dyes on colloidal silica,” J. Lumin. 58(1–6), 198–201 (1994). [CrossRef]
  8. G. Springholz, V. Holy, M. Pinczolits, G. Bauer, “Self-organized growth of three- dimensional quantum-dot crystals with fcc-like stacking and a tunable lattice constant,” Science 282(5389), 734–737 (1998). [CrossRef] [PubMed]
  9. A. Luque, A. Martí, C. Stanley, N. López, L. Cuadra, D. Zhou, J. L. Pearson, A. McKee, “General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence,” J. Appl. Phys. 96(1), 903–909 (2004). [CrossRef]
  10. K. Akahane, N. Yamamoto, M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett. 93(4), 041121 (2008). [CrossRef]
  11. S. Tomić, T. S. Jones, N. M. Harrison, “Absorption characteristics of a quantum dot array induced intermediate band: Implications for solar cell design,” Appl. Phys. Lett. 93(26), 263105 (2008). [CrossRef]
  12. A. Takata, R. Oshima, Y. Shoji, K. Akahane, Y. Okada, “Growth of multi-stacked InAs/GaNAs quantum dots grown with As2 source in atomic hydrogen-assisted molecular beam epitaxy,” Physica E 42(10), 2745–2748 (2010). [CrossRef]
  13. M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, eds., Principles of Nanophotonics (Taylor and Francis, 2008).
  14. M. Ohtsu, Dressed Photons (Springer-Verlag, 2013).
  15. S. Yukutake, T. Kawazoe, T. Yatsui, W. Nomura, K. Kitamura, M. Ohtsu, “Selective photocurrent generation in the transparent wavelength range of a semiconductor photovoltaic device using a phonon-assisted optical near-field process,” Appl. Phys. B 99(3), 415–422 (2010). [CrossRef]
  16. H. Fujiwara, T. Kawazoe, M. Ohtsu, “Nonadiabatic multi-step excitation for the blue–green light emission from dye grains induced by the near-infrared optical near-field,” Appl. Phys. B 98(2–3), 283–289 (2010). [CrossRef]
  17. T. Kawazoe, M. A. Mueed, M. Ohtsu, “Highly efficient and broadband Si homojunction structured near-infrared light emitting diodes based on the phonon-assisted optical near-field process,” Appl. Phys. B 104(4), 747–754 (2011). [CrossRef]
  18. K. Kitamura, T. Kawazoe, M. Ohtsu, “Homojunction-structured ZnO light-emitting diodes fabricated by dressed-photon assisted annealing,” Appl. Phys. B 107(2), 293–299 (2012). [CrossRef]
  19. T. Kawazoe, H. Fujiwara, K. Kobayashi, M. Ohtsu, “Visible light emission from dye molecular grains via infrared excitation based on the nonadiabatic transition induced by the optical near field,” J. Sel. Top. Quantum Electron. 15(5), 1380–1386 (2009). [CrossRef]
  20. N. Wada, T. Kawazoe, M. Ohtsu, “An optical and electrical relaxation oscillator using a Si homojunction structured light emitting diode,” Appl. Phys. B 108(1), 25–29 (2012). [CrossRef]
  21. N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, “Fixed-distance coupling and encapsulation of heterogeneous quantum dots using phonon-assisted photo-curing,” Appl. Phys. B 110(1), 39–45 (2013). [CrossRef]
  22. N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, “Nanophotonic droplet: a nanometric optical device consisting of size- and number-selective coupled quantum dots,” Appl. Phys. B 110(3), 293–297 (2013). [CrossRef]
  23. N. Tate, M. Naruse, Y. Liu, T. Kawazoe, T. Yatsui, M. Ohtsu, “Experimental demonstration and stochastic modeling of autonomous formation of nanophotonic droplets,” Appl. Phys. B 112(4), 587–592 (2013). [CrossRef]
  24. A. Yariv, “Second-harmonics generation and parametric oscillation,” in Introduction to Optical Electronics, 1st ed. (Holt, Rinehert and Winston, 1985), Chap. 8, pp. 177–221.
  25. P. W. Atkins, “Spectroscopy2: Electronic transitions,” in Physical Chemistry, 6th ed. (Oxford University, 1998), Chap. 17, pp. 497–526.
  26. M. Ohtsu, ed., Progress in Nano-Electro-Optics II (Springer-Verlag, 2004).
  27. T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88(6), 067404 (2002). [CrossRef] [PubMed]
  28. T. Kawazoe, K. Kobayashi, M. Ohtsu, “Optical nanofountain: A biomimetic device that concentrates optical energy in a nanometric region,” Appl. Phys. Lett. 86(10), 103102 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited