OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10270–10293

High-frequency extinction efficiencies of spheroids: rigorous T-matrix solutions and semi-empirical approximations

Lei Bi and Ping Yang  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 10270-10293 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2245 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A semi-empirical high-frequency formula is developed to efficiently and accurately compute the extinction efficiencies of spheroids in the cases of moderate and large size parameters under either fixed or random orientation condition. The formula incorporates the semi-classical scattering concepts formulated by extending the complex angular momentum approximation of the Lorenz-Mie theory to the spheroid case on the basis of the physical rationales associated with changing the particle morphology from a sphere to a spheroid. The asymptotic edge-effect expansion is truncated with an optimal number of terms based on a priori knowledge obtained from comparing the semi-classical Mie extinction efficiencies with the Lorenz-Mie solutions. The present formula is fully tested in comparison with the T-matrix results for spheroids with the aspect ratios from 0.5 to 2.0, and for various refractive indices mr + imi, with mr from 1.0 to 2.0 and mi from 0 to 0.5.

© 2014 Optical Society of America

OCIS Codes
(290.0290) Scattering : Scattering
(290.2200) Scattering : Extinction

ToC Category:

Original Manuscript: March 10, 2014
Revised Manuscript: April 8, 2014
Manuscript Accepted: April 14, 2014
Published: April 21, 2014

Lei Bi and Ping Yang, "High-frequency extinction efficiencies of spheroids: rigorous T-matrix solutions and semi-empirical approximations," Opt. Express 22, 10270-10293 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. N. Liou, An Introduction to Atmospheric Radiation (Academic, 2002).
  2. G. E. Elicable, L. H. Garcia-Rubio, “Latex particle size distribution from turbidimetry using inversion techniques,” J. Colloid Interface Sci. 129(1), 192–200 (1989). [CrossRef]
  3. G. Crawley, M. Cournil, D. D. Benedetto, “Size analysis of fine particle suspensions by spectral turbidimetry: potential and limits,” Powder Technol. 91(3), 197–208 (1997). [CrossRef]
  4. M. Z. Li, D. Wilkinson, “Particle size distribution determination from spectral extinction using evolutionary programming,” Chem. Eng. Sci. 56(10), 3045–3052 (2001). [CrossRef]
  5. L. Wang, X. Sun, J. Xing, “Retrieval of spheroidal particle size distribution using the approximate method in spectral extinction technique,” Opt. Commun. 285(7), 1646–1653 (2012). [CrossRef]
  6. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds., Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 1999).
  7. A. A. Kokhanovsky, ed., Light Scattering Reviews 8 (Springer-Praxis Publishing, Chichester, UK, 2013).
  8. P. Chylek, J. D. Klett, “Extinction cross sections of nonspherical particles in the anomalous diffraction approximation,” J. Opt. Soc. Am. A 8(2), 274–281 (1991). [CrossRef]
  9. G. R. Fournier, B. T. N. Evans, “Approximation to extinction efficiency for randomly oriented spheroids,” Appl. Opt. 30(15), 2042–2048 (1991). [CrossRef] [PubMed]
  10. B. T. N. Evans, G. R. Fournier, “Analytic approximation to randomly oriented spheroid extinction,” Appl. Opt. 33(24), 5796–5804 (1994). [CrossRef] [PubMed]
  11. A. J. Baran, S. Havemann, “Rapid computation of the optical properties of hexagonal columns using complex angular momentum theory,” J. Quant. Spectrosc. Radiat. Transf. 63(2-6), 499–519 (1999). [CrossRef]
  12. P. Yang, K. N. Liou, W. P. Arnott, “Extinction efficiency and single-scattering albedo of ice crystals in laboratory and natural cirrus clouds,” J. Geophys. Res. 102(D18), 21825–21835 (1997). [CrossRef]
  13. J. Q. Zhao, Y. Q. Hu, “Bridging technique for calculating the extinction efficiency of arbitrary shaped particles,” Appl. Opt. 42(24), 4937–4945 (2003). [CrossRef] [PubMed]
  14. A. A. Kokhanovsky, E. P. Zege, “Optical properties of aerosol particles: a review of approximate analytical solutions,” J. Aerosol Sci. 28(1), 1–21 (1997). [CrossRef]
  15. H. M. Nussenzveig, W. J. Wiscombe, “Efficiency factors in Mie scattering,” Phys. Rev. Lett. 45(18), 1490–1494 (1980). [CrossRef]
  16. H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering (Cambridge University, 1992).
  17. P. Debye, “Das elektromagnetische Feld um einen Zylinder und die Theorie des Regenbogens,” Phys. Z. 9, 775–778 (1908).
  18. S. Asano, G. Yamamoto, “Light scattering by a spheroidal particle,” Appl. Opt. 14(1), 29–49 (1975). [CrossRef] [PubMed]
  19. P. Yang, Q. Feng, G. Hong, G. W. Kattawar, W. J. Wiscombe, M. I. Mishchenko, O. Dubovik, I. Laszlo, I. N. Sokolik, “Modeling of the scattering and radiative properties of nonspherical dust-like aerosols,” J. Aerosol Sci. 38(10), 995–1014 (2007). [CrossRef]
  20. L. Bi, P. Yang, G. W. Kattawar, R. Kahn, “Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes,” Appl. Opt. 48(1), 114–126 (2009). [CrossRef] [PubMed]
  21. K. N. Liou, Y. Takano, P. Yang, “On geometric optics and surface waves for light scattering by spheres,” J. Quant. Spectrosc. Radiat. Transf. 111(12-13), 1980–1989 (2010). [CrossRef]
  22. K. N. Liou, Y. Takano, P. Yang, “Light absorption and scattering by aggregates: application to black carbon and snow grains,” J. Quant. Spectrosc. Radiat. Transf. 112(10), 1581–1594 (2011). [CrossRef]
  23. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  24. D. S. Jones, “Approximate methods in high-frequency scattering,” Proc. R. Soc. A 239, 338–348 (1957). [CrossRef]
  25. D. S. Jones, “High-frequency scattering of electromagnetic waves,” Proc. R. Soc. Lond. A Math. Phys. Sci. 240(1221), 206–213 (1957). [CrossRef]
  26. P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D Part. Fields 3(4), 825–839 (1971). [CrossRef]
  27. S. C. Hill, A. C. Hill, P. W. Barber, “Light scattering by size/shape distributions of soil particles and spheroids,” Appl. Opt. 23(7), 1025–1031 (1984). [CrossRef] [PubMed]
  28. T. W. Chen, “High energy light scattering in the generalized eikonal approximation,” Appl. Opt. 28(19), 4096–4102 (1989). [CrossRef] [PubMed]
  29. N. V. Voshchinnikov, V. G. Farafonov, “Optical properties of spheroidal particles,” Astrophys. Space Sci. 204(1), 19–86 (1993). [CrossRef]
  30. B. R. Johnson, “Invariant imbedding T matrix approach to electromagnetic scattering,” Appl. Opt. 27(23), 4861–4873 (1988). [CrossRef] [PubMed]
  31. L. Bi, P. Yang, G. W. Kattawar, M. I. Mishchenko, “Efficient implementation of the invariant imbedding T-matrix method and the separation of variables method applied to large nonspherical inhomogeneous particles,” J. Quant. Spectrosc. Radiat. Transf. 116, 169–183 (2013). [CrossRef]
  32. L. Bi, P. Yang, G. W. Kattawar, M. I. Mishchenko, “A numerical combination of extended boundary condition method and invariant imbedding method applied to light scattering by large spheroids and cylinders,” J. Quant. Spectrosc. Radiat. Transf. 123, 17–22 (2013). [CrossRef]
  33. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, absorption and emission of light by small particles (Cambridge University, 2002).
  34. M. I. Mishchenko, “Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation,” Appl. Opt. 39(6), 1026–1031 (2000). [CrossRef] [PubMed]
  35. P. Yang, M. Wendisch, L. Bi, G. W. Kattawar, M. I. Mishchenko, Y. Hu, “Dependence of extinction cross-section on incident polarization state and particle orientation,” J. Quant. Spectrosc. Radiat. Transf. 112(12), 2035–2039 (2011). [CrossRef]
  36. W. H. Beyer, ed., CRC standard mathematical tables (CRC Press, 1981).
  37. W. T. Grandy, Scattering of waves from large spheres (Cambridge University, 2000).
  38. J. A. Lock, “Ray scattering by an arbitrarily oriented spheroid. II. Transmission and cross-polarization effects,” Appl. Opt. 35(3), 515–531 (1996). [CrossRef] [PubMed]
  39. K. F. Ren, F. Onofri, C. Rozé, T. Girasole, “Vectorial complex ray model and application to two-dimensional scattering of plane wave by a spheroidal particle,” Opt. Lett. 36(3), 370–372 (2011). [CrossRef] [PubMed]
  40. F. Xu, K. F. Ren, X. Cai, J. Shen, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. II. By a spheroidal particle with end-on incidence,” Appl. Opt. 45(20), 5000–5009 (2006). [CrossRef] [PubMed]
  41. M. Born and E. Wolf, Principles of Optics (Pergamon, 2001).
  42. A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of Integral Transforms (McGraw-Hill, 1954).
  43. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983)
  44. L. Bi, P. Yang, G. W. Kattawar, “Edge-effect contribution to the extinction of light by dielectric disks and cylindrical particles,” Appl. Opt. 49(24), 4641–4646 (2010). [CrossRef] [PubMed]
  45. J. A. Lock, T. A. McCollum, “Further thoughts on Newton’s zero–order rainbow,” Am. J. Phys. 62(12), 1082–1089 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited