OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10304–10316

Cubic B-spline calibration for 3D super-resolution measurements using astigmatic imaging

Sven Proppert, Steve Wolter, Thorge Holm, Teresa Klein, Sebastian van de Linde, and Markus Sauer  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 10304-10316 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3273 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In recent years three-dimensional (3D) super-resolution fluorescence imaging by single-molecule localization (localization microscopy) has gained considerable interest because of its simple implementation and high optical resolution. Astigmatic and biplane imaging are experimentally simple methods to engineer a 3D-specific point spread function (PSF), but existing evaluation methods have proven problematic in practical application. Here we introduce the use of cubic B-splines to model the relationship of axial position and PSF width in the above mentioned approaches and compare the performance with existing methods. We show that cubic B-splines are the first method that can combine precision, accuracy and simplicity.

© 2014 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.2520) Microscopy : Fluorescence microscopy
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:
Imaging Systems

Original Manuscript: November 12, 2013
Revised Manuscript: January 30, 2014
Manuscript Accepted: February 17, 2014
Published: April 22, 2014

Virtual Issues
Vol. 9, Iss. 7 Virtual Journal for Biomedical Optics

Sven Proppert, Steve Wolter, Thorge Holm, Teresa Klein, Sebastian van de Linde, and Markus Sauer, "Cubic B-spline calibration for 3D super-resolution measurements using astigmatic imaging," Opt. Express 22, 10304-10316 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006). [CrossRef] [PubMed]
  2. H. Shroff, C. G. Galbraith, J. A. Galbraith, E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods 5, 417–423 (2008). [CrossRef] [PubMed]
  3. S. T. Hess, T. P. Girirajan, M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006). [CrossRef] [PubMed]
  4. M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods 3, 793–795 (2006). [CrossRef] [PubMed]
  5. M. Bates, B. Huang, G. T. Dempsey, X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317, 1749–1753 (2007). [CrossRef] [PubMed]
  6. M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventionalfluorescent probes,” Angew. Chem. Int. Ed. 47, 6172–6176 (2008). [CrossRef]
  7. S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc. 6, 991–1009 (2011). [CrossRef] [PubMed]
  8. B. Huang, W. Wang, M. Bates, X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008). [CrossRef] [PubMed]
  9. M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5, 527–529 (2008). [CrossRef] [PubMed]
  10. G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U. S. A. 106, 3125–3130 (2009). [CrossRef] [PubMed]
  11. P. Kanchanawong, G. Shtengel, A. M. Pasapera, E. B. Ramko, M. W. Davidson, H. F. Hess, C. M. Waterman, “Nanoscale architecture of integrin-based cell adhesions,” Nature 468, 580–584 (2010). [CrossRef] [PubMed]
  12. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U. S. A. 106, 2995–2999 (2009). [CrossRef] [PubMed]
  13. D. Baddeley, M. Cannell, C. Soeller, “Three-dimensional sub-100 nm super-resolution imaging of biological samples using a phase ramp in the objective pupil,” Nano Res. 4, 589–598 (2011). [CrossRef]
  14. H. Kao, A. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J. 67, 1291–1300 (1994). [CrossRef] [PubMed]
  15. M. K. Cheezum, W. F. Walker, W. H. Guilford, “Quantitative comparison of algorithms for tracking single fluorescent particles,” Biophys. J. 81, 2378–2388 (2001). [CrossRef] [PubMed]
  16. R. E. Thompson, D. R. Larson, W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002). [CrossRef] [PubMed]
  17. K. I. Mortensen, L. S. Churchman, J. A. Spudich, H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7, 377–381 (2010). [CrossRef] [PubMed]
  18. S. Stallinga, B. Rieger, “Accuracy of the gaussian point spread function model in 2d localizationmicroscopy,” Opt. Express 18, 24461–24476 (2010). [CrossRef] [PubMed]
  19. A. G. York, A. Ghitani, A. Vaziri, M. W. Davidson, H. Shroff, “Confined activation and subdiffractive localization enables whole-cell palm with genetically expressed probes,” Nat. Methods 8, 327–333 (2011). [CrossRef] [PubMed]
  20. R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods 7, 339–340 (2010). [CrossRef] [PubMed]
  21. L. Holtzer, T. Meckel, T. Schmidt, “Nanometric three-dimensional tracking of individual quantum dots in cells,” Appl. Phys. Lett. 90, 053902 (2007). [CrossRef]
  22. S. Wolter, S. Proppert, S. Aufmkolk, A. Lampe, T. Klein, “rapid STORM manual,” http://www.super-resolution.de/home/rapidstorm/ (2012).
  23. S. Wolter, M. Schüttpelz, M. Tscherepanow, S. van de Linde, M. Heilemann, M. Sauer, “Real-time computation of subdiffraction-resolution fluorescence images,” J. Microsc. 237, 12–22 (2010). [CrossRef] [PubMed]
  24. C. de Boor, A Practical Guide to Splines, Applied Mathematical Sciences (Springer, 1978). [CrossRef]
  25. S. Wolter, A. Löschberger, T. Holm, S. Aufmkolk, M.-C. Dabauvalle, S. van de Linde, M. Sauer, “rapid STORM: accurate, fast open-source software for localization microscopy,” Nat. Methods 9, 1040–1041 (2012). [CrossRef] [PubMed]
  26. M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth, F. Rossi, Gnu Scientific Library: Reference Manual (Network Theory Ltd., 2003).
  27. J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965). [CrossRef]
  28. S. McKinley, M. Levine, Cubic Spline Interpolation (College of the Redwoods, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited