OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10317–10331

Rayleigh scattering of surface plasmons by sub-wavelength holes

F. van Beijnum, A.S. Meeussen, C. Rétif, and M.P. van Exter  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 10317-10331 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1055 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the scattering of surface plasmons from sub-wavelength holes and find that it exhibits a stronger wavelength dependence than the traditional λ−4 scaling found for Rayleigh scattering of light from small particles. This experimental observation is consistent with recent theoretical work and linked to the two-dimensional nature of the surface plasmon and the wavelength dependence of its spatial extent in the third dimension. The scattering cross sections are obtained with a frequency-correlation technique, which compares intensity speckle patterns observed behind various random structures of holes and recorded at different wavelengths. This powerful technique even allows us to distinguish between scattering of surface plasmons into photons and scattering into other surface plasmons.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.5870) Scattering : Scattering, Rayleigh

ToC Category:

Original Manuscript: December 17, 2013
Revised Manuscript: February 14, 2014
Manuscript Accepted: February 17, 2014
Published: April 22, 2014

F. van Beijnum, A.S. Meeussen, C. Rétif, and M.P. van Exter, "Rayleigh scattering of surface plasmons by sub-wavelength holes," Opt. Express 22, 10317-10331 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett. 95, 137404 (2005). [CrossRef] [PubMed]
  2. J. Valentine, J. Li, T. Zentgraf, G. Bartal, X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009). [CrossRef]
  3. L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, P. Lodahl, “Cavity Quantum Electrodynamics with Anderson-Localized Modes,” Science 327, 1352–1355 (2010). [CrossRef] [PubMed]
  4. A. G. Brolo, “Plasmonics for future biosensors,” Nature Photon. 6, 709–713 (2012). [CrossRef]
  5. K. Vynck, M. Burresi, F. Riboli, D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nature Mater. 11, 1017–1022 (2012).
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  7. H. A. Bethe, “Theory of Diffraction by Small Holes,” Phys. Rev. Online Archive (Prola) 66, 163–182 (1944).
  8. F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, L. Kuipers, “Light passing through sub-wavelength apertures,” Rev. of Mod. Phys. 82, 729–787 (2010). [CrossRef]
  9. J. M. Yi, A. Cuche, de León Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. M. Moreno, T. W. Ebbesen, “Diffraction Regimes of Single Holes,” Phys. Rev. Lett. 109, 023901 (2012). [CrossRef] [PubMed]
  10. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72, 045421 (2005). [CrossRef]
  11. T. Matsui, A. Agrawal, A. Nahata, Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007). [CrossRef] [PubMed]
  12. J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, D. S. Kim, “Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets,” Phys. Rev. Lett. 99, 137401 (2007). [CrossRef] [PubMed]
  13. F. van Beijnum, C. Rétif, C. B. Smiet, M. P. van Exter, “Transmission processes in random patterns of subwavelength holes,” Opt. Lett. 36, 3666–3668 (2011). [CrossRef] [PubMed]
  14. F. Przybilla, C. Genet, T. W. Ebbesen, “Long vs. short-range orders in random subwavelength hole arrays,” Opt. Express 20, 4697–4709 (2012). [CrossRef] [PubMed]
  15. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, C. W. Kimball, “Subwavelength Focusing and Guiding of Surface Plasmons,” Nano Lett. 5, 1399–1402 (2005). [CrossRef] [PubMed]
  16. A. Y. Nikitin, F. J. García-Vidal, L. Martín-Moreno, “Surface Electromagnetic Field Radiated by a Subwavelength Hole in a Metal Film,” Phys. Rev. Lett. 105, 073902 (2010). [CrossRef] [PubMed]
  17. A. V. Shchegrov, I. V. Novikov, A. A. Maradudin, “Scattering of Surface Plasmon Polaritons by a Circularly Symmetric Surface Defect,” Phys. Rev. Lett. 78, 4269–4272 (1997). [CrossRef]
  18. N. Rotenberg, M. Spasenović, T. L. Krijger, B. L. Feber, F. J. G. de Abajo, L. Kuipers, “Plasmon Scattering from Single Subwavelength Holes,” Phys. Rev. Lett. 108, 127402 (2012). [CrossRef] [PubMed]
  19. H. T. Liu, P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008). [CrossRef] [PubMed]
  20. F. van Beijnum, C. Retif, C. B. Smiet, H. Liu, P. Lalanne, M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012). [CrossRef] [PubMed]
  21. J. W. Strutt, “XV. On the light from the sky, its polarization and colour,” Phil. Mag. Series 4 41, 107–120 (1871).
  22. D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, C. Lienau, “Microscopic Origin of Surface-Plasmon Radiation in Plasmonic Band-Gap Nanostructures,” Phys. Rev. Lett. 91, 143901 (2003). [CrossRef] [PubMed]
  23. J. Li, H. Iu, D. Y. Lei, J. T. K. Wan, J. B. Xu, H. P. Ho, M. Y. Waye, H. C. Ong, “Dependence of surface plasmon lifetimes on the hole size in two-dimensional metallic arrays,” Appl. Phys. Lett. 94, 183112 (2009). [CrossRef]
  24. P. Yeh, Optical waves in layered media (Wiley, New York, 1998).
  25. F. van Beijnum, J. Sirre, C. Rétif, M. P. van Exter, “Speckle correlation functions applied to surface plasmons,” Phys. Rev. B 85, 035437 (2012). [CrossRef]
  26. S. Feng, C. Kane, P. A. Lee, A. D. Stone, “Correlations and Fluctuations of Coherent Wave Transmission through Disordered Media,” Phys. Rev. Lett. 61, 834–837 (1988). [CrossRef] [PubMed]
  27. I. Freund, M. Rosenbluh, S. Feng, “Memory Effects in Propagation of Optical Waves through Disordered Media,” Phys. Rev. Lett. 61, 2328–2331 (1988). [CrossRef] [PubMed]
  28. M. P. van Albada, B. A. van Tiggelen, A. Lagendijk, A. Tip, “Speed of propagation of classical waves in strongly scattering media,” Phys. Rev. Lett. 66, 3132–3135 (1991). [CrossRef] [PubMed]
  29. R. Berkovits, S. Feng, “Correlations in coherent multiple scattering,” Phys. Reports 238, 135–172 (1994). [CrossRef]
  30. S. Faez, P. M. Johnson, A. Lagendijk, “Varying the Effective Refractive Index to Measure Optical Transport in Random Media,” Phys. Rev. Lett. 103, 053903 (2009). [CrossRef] [PubMed]
  31. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012). [CrossRef] [PubMed]
  32. P. Lalanne, J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nature Phys. 2, 551–556 (2006). [CrossRef]
  33. A. Y. Nikitin, S. G. Rodrigo, F. J. García-Vidal, L. Martín-Moreno, “In the diffraction shadow: Norton waves versus surface plasmon polaritons in the optical region,” New Journal of Physics 11, 123020 (2009). [CrossRef]
  34. W. Dai, C. M. Soukoulis, “Theoretical analysis of the surface wave along a metal-dielectric interface,” Phys. Rev. B 80, 155407 (2009). [CrossRef]
  35. P. B. Johnson, R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  36. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  37. R. E. Thomas, G. A. Haas, “Diffusion measurements in thin films utilizing work function changes: Cr into au,” J. of Appl. Phys. 43, 4900–4907 (2003). [CrossRef]
  38. M. Rost, D. Quist, J. Frenken, “Grains, growth, and grooving,” Phys. Rev. Lett. 91, 026101(2003). [CrossRef]
  39. N. Rotenberg, T. L. Krijger, B. L. Feber, M. Spasenović, F. J. G. de Abajo, L. Kuipers, “Magnetic and electric response of single subwavelength holes,” Phys. Rev. B 88, 241408 (2013). [CrossRef]
  40. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006). [CrossRef]
  41. H.C. van de Hulst, Light Scattering by Small Particles (Dover, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited