OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10341–10350

Nanofocusing in circular sector-like nanoantennas

Vladimir A. Zenin, Anders Pors, Zhanghua Han, René L. Eriksen, Valentyn S. Volkov, and Sergey I. Bozhevolnyi  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 10341-10350 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1877 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Gold circular sector-like nanoantennas (with a radius of 500 nm and a taper angle of 60°, 90°, and 120°) on glass are investigated in a near-infrared wavelength range (900 - 2100 nm). Amplitude- and phase-resolved near-field images of circular sector-like antenna modes at telecom wavelength feature a concentric circular line of phase contrast, demonstrating resonant excitation of a standing wave of counter-propagating surface plasmons, travelling between a tip and opposite circular edge of the antenna. Transmission spectra obtained in the range 900 - 2100 nm are in good agreement with numerical simulations, revealing the main feature of this antenna configuration, viz., the resonance wavelength, in contrast to triangular antennas, does not depend on the taper angle and is determined only by the sector radius. This feature together with a robust and easily predictable frequency response makes circular sector-like nanoantennas very promising for implementing bowtie antennas and attractive for many applications.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(180.4243) Microscopy : Near-field microscopy

ToC Category:

Original Manuscript: January 24, 2014
Revised Manuscript: March 16, 2014
Manuscript Accepted: April 10, 2014
Published: April 22, 2014

Vladimir A. Zenin, Anders Pors, Zhanghua Han, René L. Eriksen, Valentyn S. Volkov, and Sergey I. Bozhevolnyi, "Nanofocusing in circular sector-like nanoantennas," Opt. Express 22, 10341-10350 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Zhang, L. Huang, C. Santschi, O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010). [CrossRef] [PubMed]
  2. M. L. Juan, M. Righini, R. Quidant, “Plasmon nano-optical tweezers,” Nature Photonics 5, 349–356 (2011). [CrossRef]
  3. A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21,065306 (2010). [CrossRef] [PubMed]
  4. J. N. Farahani, D. W. Pohl, H. J. Eisler, B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95,017402 (2005). [CrossRef] [PubMed]
  5. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat Mater 9, 205–213 (2010). [CrossRef] [PubMed]
  6. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nature Photonics 2, 226–229 (2008). [CrossRef]
  7. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat Mater 9, 193–204 (2010). [CrossRef] [PubMed]
  8. P. Bharadwaj, B. Deutsch, L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009). [CrossRef]
  9. L. Novotny, N. F. van Hulst, “Antennas for light,” Nature Photonics 5, 83–90 (2011). [CrossRef]
  10. D. K. Gramotnev, S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photonics 4, 83–91 (2010). [CrossRef]
  11. A. Pors, O. Albrektsen, I. P. Radko, S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3,2155 (2013). [CrossRef] [PubMed]
  12. A. Pors, S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21, 27438–27451 (2013). [CrossRef] [PubMed]
  13. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004). [CrossRef]
  14. H. Fischer, O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008). [CrossRef] [PubMed]
  15. D. K. Gramotnev, A. Pors, M. Willatzen, S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85,045434 (2012). [CrossRef]
  16. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98,266802 (2007). [CrossRef] [PubMed]
  17. T. Søndergaard, J. Beermann, A. Boltasseva, S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77,115420 (2008). [CrossRef]
  18. A. Pors, M. Willatzen, O. Albrektsen, S. I. Bozhevolnyi, “From plasmonic nanoantennas to split-ring resonators: tuning scattering strength,” J. Opt. Soc. Am. B 27, 1680–1687 (2010). [CrossRef]
  19. R. Zia, M. D. Selker, M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71,165431 (2005). [CrossRef]
  20. M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, A. Borisov, J. Aizpurua, R. Hillenbrand, “Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114, 7341–7345 (2010). [CrossRef]
  21. N. Ocelic, A. Huber, R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89,101124 (2006). [CrossRef]
  22. A. Garcia-Etxarri, I. Romero, F. J. Garcia de Abajo, R. Hillenbrand, J. Aizpurua, “Influence of the tip in near-field imaging of nanoparticle plasmonic modes: weak and strong coupling regimes,” Phys. Rev. B 79,125439 (2009). [CrossRef]
  23. R. Esteban, R. Vogelgesang, J. Dorfmller, A. Dmitriev, C. Rockstuhl, C. Etrich, K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8, 3155–3159 (2008) [CrossRef] [PubMed]
  24. M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature Photonics 3, 287–291 (2009). [CrossRef]
  25. R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16, 20295–20305 (2008). [CrossRef] [PubMed]
  26. M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nature Photonics 5, 283–287 (2011). [CrossRef]
  27. P. B. Johnson, R.W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  28. A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005). [CrossRef]
  29. T. Søndergaard, S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B 75,073402 (2007). [CrossRef]
  30. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003). [CrossRef]
  31. P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited