OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10408–10415

Towards 100 channel dense wavelength division multiplexing with 100GHz spacing on silicon

D. T. H. Tan, A. Grieco, and Y. Fainman  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 10408-10415 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1889 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A 1 by 4 wavelength division multiplexer with 0.5nm bandwidth and no free spectral range limitation is demonstrated on silicon. The device utilizes wide bandwidth filters cascaded with ring resonators in order to select specific ring resonator modes and route each resonant mode to a separate port. This technology will enable dense wavelength division multiplexing covering the C – and L – bands with up to 100 10GB/s channels separated by 100GHz to be implemented for optical interconnects applications. A 1 by 4 wavelength division multiplexer with 3dB channel bandwidths as small as 0.5nm and 1dB insertion loss are demonstrated with 16dB inter-channel crosstalk suppression. A second wavelength division multiplexer scheme with four channels, each spaced 0.5nm apart without any free spectral range limitations is also demonstrated using wide bandwidth filters centered at the same wavelength to select resonances from four different ring resonators with slightly different widths.

© 2014 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Optical Communications

Original Manuscript: February 28, 2014
Revised Manuscript: April 10, 2014
Manuscript Accepted: April 14, 2014
Published: April 22, 2014

D. T. H. Tan, A. Grieco, and Y. Fainman, "Towards 100 channel dense wavelength division multiplexing with 100GHz spacing on silicon," Opt. Express 22, 10408-10415 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” Selected Areas in Communications, IEEE Journal on 8(948), 964 (1990).
  2. A. Mekis, S. Abdalla, D. Foltz, S. Gloeckner, S. Hovey, S. Jackson, Y. Liang, M. Mack, G. Masini, M. Peterson, T. Pinguet, S. Sahni, M. Sharp, P. Sun, D. Tan, L. Verslegers, B. P. Welch, K. Yokoyama, S. Yu, P. M. De Dobbelaere, “A CMOS photonics platform for high-speed optical interconnects,” in Proceedings of IEEE Photonics Conference, 356 – 357 (2012). [CrossRef]
  3. S. Assefa, W. M. Green, A. Rylyakov, C. Schow, F. Horst, and Y. Vlasov, “CMOS Integrated Nanophotonics: Enabling Technology for Exascale Computing Systems,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMM6. [CrossRef]
  4. X. Zheng, F. Y. Liu, J. Lexau, D. Patil, G. Li, Y. Luo, H. D. Thacker, I. Shubin, J. Yao, K. Raj, R. Ho, J. E. Cunningham, A. V. Krishnamoorthy, “Ultralow power 80 Gb/s arrayed CMOS silicon photonic transceivers for WDM optical links,” J. Lightwave Technol. 30(4), 641–650 (2012). [CrossRef]
  5. M. Hochberg, T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010). [CrossRef]
  6. F. Li, M. Pelusi, D.-X. Xu, R. Ma, S. Janz, B. J. Eggleton, D. J. Moss, “All-optical wavelength conversion for 10 Gb/s DPSK signals in a silicon ring resonator,” Opt. Express 19(23), 22410–22416 (2011). [CrossRef] [PubMed]
  7. L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006). [CrossRef]
  8. D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19(3), 2401–2409 (2011). [CrossRef] [PubMed]
  9. S. Kawanishi, H. Takara, K. Uchiyama, I. Shake, K. Mori, “3 Tbit/s (160 Gbit/s × 19 channel) optical TDM and WDM transmission experiment,” Electron. Lett. 35(10), 826–827 (1999). [CrossRef]
  10. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010). [CrossRef]
  11. D. T. H. Tan, P. C. Sun, Y. Fainman, “Monolithic nonlinear pulse compressor on a silicon chip,” Nat Commun 1(8), 116 (2010). [CrossRef] [PubMed]
  12. D. T. H. Tan, “Optical pulse compression on a silicon chip – Effect of group velocity dispersion and free carriers,” Appl. Phys. Lett. 101(21), 211112 (2012). [CrossRef]
  13. G. F. R. Chen, T. Wang, C. Donnelly, D. T. H. Tan, “Second and third order dispersion generation using nonlinearly chirped silicon waveguide gratings,” Opt. Express 21(24), 29223–29230 (2013). [CrossRef] [PubMed]
  14. D. T. H. Tan, K. Ikeda, Y. Fainman, “Coupled chirped vertical gratings for on chip group velocity dispersion engineering,” Appl. Phys. Lett. 95(14), 141109 (2009). [CrossRef]
  15. D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, Y. Fainman, “Chip-scale dispersion engineering using chirped vertical gratings,” Opt. Lett. 33(24), 3013–3015 (2008). [CrossRef] [PubMed]
  16. W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, L. Chrostowski, “Coupler-apodized Bragg-grating add-drop filter,” Opt. Lett. 38(16), 3068–3070 (2013). [CrossRef] [PubMed]
  17. W. Shi, X. Wang, W. Zhang, L. Chrostowski, N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett. 36(20), 3999–4001 (2011). [CrossRef] [PubMed]
  18. W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, N. A. F. Jaeger, “Grating-coupled silicon microring resonators,” Appl. Phys. Lett. 100(12), 121118 (2012). [CrossRef]
  19. R. Boeck, W. Shi, L. Chrostowski, N. A. F. Jaeger, “FSR-Eliminated Vernier Racetrack Resonators Using Grating-Assisted Couplers,” IEEE Photonics Journal 5(5), 2202511 (2013). [CrossRef]
  20. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012). [CrossRef]
  21. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 2002).
  22. W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013). [CrossRef] [PubMed]
  23. F. Xia, M. Rooks, L. Sekaric, Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007). [CrossRef] [PubMed]
  24. J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited