OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10430–10438

Embedded coupled microrings with high-finesse and close-spaced resonances for optical signal processing

Mario C. M. M. Souza, Luis A. M. Barea, Felipe Vallini, Guilherme F. M. Rezende, Gustavo S. Wiederhecker, and Newton C. Frateschi  »View Author Affiliations


Optics Express, Vol. 22, Issue 9, pp. 10430-10438 (2014)
http://dx.doi.org/10.1364/OE.22.010430


View Full Text Article

Enhanced HTML    Acrobat PDF (2193 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Single microring resonators have been used in applications such as wavelength multicasting and microwave photonics, but the dependence of the free spectral range with ring radius imposes a trade-off between the required GHz optical channel spacing, footprint and power consumption. We demonstrate four-channel all-optical wavelength multicasting using only 1 mW of control power, with converted channel spacing of 40-60 GHz. Our device is based on a compact embedded microring design fabricated on a scalable SOI platform. The coexistence of close resonance spacing and high finesse (205) in a compact footprint is possible due to enhanced quality factors (30,000) resulting from the embedded configuration and the coupling-strength dependence of resonance spacing, instead of ring size. In addition, we discuss the possibility of achieving continuously mode splitting from a single-notch resonance up to 40 GHz.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.1150) Optical devices : All-optical devices
(230.4555) Optical devices : Coupled resonators

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: February 10, 2014
Revised Manuscript: April 12, 2014
Manuscript Accepted: April 16, 2014
Published: April 23, 2014

Citation
Mario C. M. M. Souza, Luis A. M. Barea, Felipe Vallini, Guilherme F. M. Rezende, Gustavo S. Wiederhecker, and Newton C. Frateschi, "Embedded coupled microrings with high-finesse and close-spaced resonances for optical signal processing," Opt. Express 22, 10430-10438 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-9-10430


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Saruwatari, “All-optical signal processing for terabit/second optical transmission,” IEEE J. Sel. Top. Quantum Electron. 6, 1363–1374 (2000).
  2. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser Phot. Rev. 6(1), 47–73 (2012). [CrossRef]
  3. S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, A. Poon, “Silicon photonics: from a microresonator perspective,” Laser Phot. Rev. 6(2), 145–177 (2012). [CrossRef]
  4. G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010). [CrossRef]
  5. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004). [CrossRef]
  6. F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  7. Y. Tian, L. Zhang, R. Ji, L. Yang, P. Zhou, H. Chen, J. Ding, W. Zhu, Y. Lu, L. Jia, Q. Fang, M. Yu, “Proof of concept of directed OR/NOR and AND/NAND logic circuit consisting of two parallel microring resonators,” Opt. Lett. 36(9), 1650–1652 (2011). [CrossRef] [PubMed]
  8. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
  9. L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, A. E. Willner, “Embedded ring resonators for microphotonic applications,” Opt. Lett. 33(17), 1978–1980 (2008). [PubMed]
  10. X. Zhou, L. Zhang, A. M. Armani, R. G. Beausoleil, A. E. Willner, W. Pang, “Power enhancement and phase regimes in embedded microring resonators in analogy with electromagnetically induced transparency,” Opt. Express 21(17), 20179–20186 (2013). [CrossRef] [PubMed]
  11. L. A. M. Barea, F. Vallini, G. F. M. de Rezende, N. C. Frateschi, “Spectral engineering with CMOS compatible SOI photonic molecules,” IEEE Photonics J. 5(6), 2202717 (2013). [CrossRef]
  12. S. V. Boriskina, “Photonic Molecules and Spectral Engineering,” in Photonic Microresonator Research and Applications, I. Chremmos, O. Schwelb, and N. Uzunoglu, eds. (Springer US, 2010), pp. 393–421.
  13. Y. Hu, X. Xiao, H. Xu, X. Li, K. Xiong, Z. Li, T. Chu, Y. Yu, J. Yu, “High-speed silicon modulator based on cascaded microring resonators,” Opt. Express 20(14), 15079–15085 (2012). [CrossRef] [PubMed]
  14. L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006). [CrossRef]
  15. R. Lin, W.-D. Zhong, S. K. Bose, M. Zukerman, “Light-tree configuration for multicast traffic grooming in WDM mesh networks,” Photonic Netw. Commun. 20(2), 151–164 (2010). [CrossRef]
  16. L. H. Sahasrabuddhe, B. Mukherjee, “Light trees: optical multicasting for improved performance in wavelength routed networks,” IEEE Commun. Mag. 37(2), 67–73 (1999). [CrossRef]
  17. J. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009). [CrossRef]
  18. Q. Xu, V. R. Almeida, M. Lipson, “Micrometer-scale all-optical wavelength converter on silicon,” Opt. Lett. 30(20), 2733–2735 (2005). [CrossRef] [PubMed]
  19. Q. Li, Z. Zhang, F. Liu, M. Qiu, Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93(8), 081113 (2008). [CrossRef]
  20. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
  21. T. Wang, Z. Zhang, F. Liu, Y. Tong, J. Wang, Y. Tian, M. Qiu, Y. Su, “Modeling of quasi-grating sidewall corrugation in SOI microring add-drop filters,” Opt. Commun. 282(17), 3464–3467 (2009). [CrossRef]
  22. E. F. Franchimon, K. R. Hiremath, R. Stoffer, M. Hammer, “Interaction of whispering gallery modes in integrated optical microring or microdisk circuits: hybrid coupled mode theory model,” J. Opt. Soc. Am. B 30, 1048–1057 (2013).
  23. S. I. Schmid, K. Xia, J. Evers, “Pathway interference in a loop array of three coupled microresonators,” Phys. Rev. A 84(1), 013808 (2011). [CrossRef]
  24. V. R. Almeida, R. R. Panepucci, M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003). [PubMed]
  25. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
  26. H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, 1984). Chap. 6.
  27. A. H. Atabaki, B. Momeni, A. A. Eftekhar, E. S. Hosseini, S. Yegnanarayanan, A. Adibi, “Tuning of resonance-spacing in a traveling-wave resonator device,” Opt. Express 18(9), 9447–9455 (2010). [PubMed]
  28. W. S. Fegadolli, G. Vargas, X. Wang, F. Valini, L. A. M. Barea, J. E. B. Oliveira, N. Frateschi, A. Scherer, V. R. Almeida, R. R. Panepucci, “Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control,” Opt. Express 20(13), 14722–14733 (2012). [PubMed]
  29. H. Shahoei, J. Yao, “Simultaneous slow light, fast light, and continues slow to fast light tuning in a microresonator via interaction of dual inputs,” Proc. SPIE 8007, 80070U (2011).
  30. L. A. M. Barea, F. Vallini, P. F. Jarschel, N. C. Frateschi, “Silicon technology compatible photonic molecules for compact optical signal processing,” Appl. Phys. Lett. 103(20), 201102 (2013). [CrossRef]
  31. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004). [CrossRef] [PubMed]
  32. S. F. Preble, Q. Xu, B. S. Schmidt, M. Lipson, “Ultrafast all-optical modulation on a silicon chip,” Opt. Lett. 30(21), 2891–2893 (2005). [CrossRef] [PubMed]
  33. N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, G. T. Reed, “Free carrier lifetime modification for silicon waveguide based devices,” Opt. Express 16(24), 19779–19784 (2008). [CrossRef] [PubMed]
  34. M. Waldow, T. Plötzing, M. Gottheil, M. Först, J. Bolten, T. Wahlbrink, H. Kurz, “25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator,” Opt. Express 16(11), 7693–7702 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited