OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10487–10493

Efficient, compact and low loss thermo-optic phase shifter in silicon

Nicholas C. Harris, Yangjin Ma, Jacob Mower, Tom Baehr-Jones, Dirk Englund, Michael Hochberg, and Christophe Galland  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 10487-10493 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3527 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We design a resistive heater optimized for efficient and low-loss optical phase modulation in a silicon-on-insulator (SOI) waveguide and characterize the fabricated devices. Modulation is achieved by flowing current perpendicular to a new ridge waveguide geometry. The resistance profile is engineered using different dopant concentrations to obtain localized heat generation and maximize the overlap between the optical mode and the high temperature regions of the structure, while simultaneously minimizing optical loss due to free-carrier absorption. A 61.6 μm long phase shifter was fabricated in a CMOS process with oxide cladding and two metal layers. The device features a phase-shifting efficiency of 24.77 ± 0.43 mW/π and a −3 dB modulation bandwidth of 130.0 ± 5.59 kHz; the insertion loss measured for 21 devices across an 8-inch wafer was only 0.23 ± 0.13 dB. Considering the prospect of densely integrated photonic circuits, we also quantify the separation necessary to isolate thermo-optic devices in the standard 220 nm SOI platform.

© 2014 Optical Society of America

OCIS Codes
(250.5300) Optoelectronics : Photonic integrated circuits
(250.7360) Optoelectronics : Waveguide modulators

ToC Category:
Integrated Optics

Original Manuscript: March 12, 2014
Revised Manuscript: April 12, 2014
Manuscript Accepted: April 13, 2014
Published: April 23, 2014

Nicholas C. Harris, Yangjin Ma, Jacob Mower, Tom Baehr-Jones, Dirk Englund, Michael Hochberg, and Christophe Galland, "Efficient, compact and low loss thermo-optic phase shifter in silicon," Opt. Express 22, 10487-10493 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013). [CrossRef] [PubMed]
  2. D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39, 941 (2014). [CrossRef] [PubMed]
  3. D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, M. G. Thompson, “Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits,” New J. Phys. 14, 045003 (2012). [CrossRef]
  4. B. Jalali, S. Fathpour, “Silicon photonics,” IEEE J. Lightwave Technol. 24, 4600–4615 (2006). [CrossRef]
  5. T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E.-J. Lim, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012). [CrossRef] [PubMed]
  6. A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergmen, A. E.-J. Lim, G.-Q. Lo, M. Hochberg, “A 30 GHz silicon photonic platform,” in SPIE Optics + Optoelectronics, P. Cheben, J. Čtyroký, I. Molina-Fernandez, eds. (SPIE, 2013), p. 878107.
  7. I. Rendina, “Thermo-optical modulation at 1.5m in silicon etalon,” Electron. Lett. 28(1), 83–85(2) (1992). [CrossRef]
  8. K. Padmaraju, J. Chan, L. Chen, M. Lipson, K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20, 27999–28008 (2012). [CrossRef] [PubMed]
  9. W. S. Fegadolli, L. Feng, M. Rahman, “Experimental demonstration of a reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators for optical signal processing,” Opt. Express 22(3), 3425–3431 (2014). [CrossRef] [PubMed]
  10. M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, G. N. Nielson, “Adiabatic thermo-optic Mach–Zehnder switch,” Opt. Lett. 38, 733–735 (2013). [CrossRef] [PubMed]
  11. J. Van Campenhout, W. M. Green, S. Assefa, Y. A. Vlasov, “Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices,” Opt. Lett. 35, 1013–1015 (2010). [CrossRef] [PubMed]
  12. Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G.-Q. Lo, D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011). [CrossRef]
  13. T. Chu, H. Yamada, S. Ishida, Y. Arakawa, “Compact 1 N thermo-optic switches based on silicon photonic wire waveguides,” Opt. Express 13, 10109–10114 (2005). [CrossRef] [PubMed]
  14. J. Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, D. L. Kwong, “Fast and low power Michelson interferometer thermo-optical switch on SOI,” Opt. Express 16, 15304–15311 (2008). [CrossRef] [PubMed]
  15. P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. Matthews, M. G. Thompson, J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics 6, 45–49 (2011). [CrossRef]
  16. J. Xia, J. Yu, Z. Wang, Z. Fan, S. Chen, “Low power 2 2 thermo-optic SOI waveguide switch fabricated by anisotropy chemical etching,” Opt. Commun. 232, 223–228 (2004). [CrossRef]
  17. R. L. Espinola, M. C. Tsai, J. T. Yardley, R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15, 1366–1368 (2003). [CrossRef]
  18. T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, and others, “A 25 Gb/s silicon photonics platform,” arXiv preprint arXiv:1203.0767 (2012).
  19. C. Galland, A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergmen, A. E.-J. Lim, G.-Q. Lo, M. Hochberg, “A CMOS-compatible silicon photonic platform for high-speed integrated opto-electronics,” in SPIE Microtechnologies (SPIE, 2013), pp. 87670G. [CrossRef]
  20. W. Liu, M. Asheghi, “Phonon–boundary scattering in ultrathin single-crystal silicon layers,” Appl. Phys. Lett. 84, 3819 (2004). [CrossRef]
  21. Y. S. Touloukian, R. W. Powell, C. Y. Ho, P. G. Klemens, “Thermophysical Properties of Matter - The TPRC Data Series. Volume 1. Thermal Conductivity - Metallic Elements and Alloys,” (1970).
  22. M. B. Kleiner, S. A. Kuhn, W. Weber, “Thermal conductivity measurements of thin silicon dioxide films in integrated circuits,” IEEE Trans. Electron. Devices 43, 1602–1609 (1996). [CrossRef]
  23. Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21, 1310–1316 (2013). [CrossRef] [PubMed]
  24. L. He, Y. Liu, C. Galland, A.-J. Lim, G.-Q. Lo, T. Baehr-Jones, M. Hochberg, “A high-efficiency nonuniform grating coupler realized with 248-nm optical lithography,” IEEE Photon. Technol. Lett. 25, 1358–1361 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited