OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10494–10499

87Rb-stabilized 375-MHz Yb:fiber femtosecond frequency comb

Thomas C. Schratwieser, Karolis Balskus, Richard A. McCracken, Carl Farrell, Christopher G. Leburn, Zhaowei Zhang, Tobias P. Lamour, Teresa I. Ferreiro, Alireza Marandi, Aidan S. Arnold, and Derryck T. Reid  »View Author Affiliations


Optics Express, Vol. 22, Issue 9, pp. 10494-10499 (2014)
http://dx.doi.org/10.1364/OE.22.010494


View Full Text Article

Enhanced HTML    Acrobat PDF (864 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a fully stabilized 1030-nm Yb-fiber frequency comb operating at a pulse repetition frequency of 375 MHz. The comb spacing was referenced to a Rb-stabilized microwave synthesizer and the comb offset was stabilized by generating a super-continuum containing a coherent component at 780.2 nm which was heterodyned with a 87Rb-stabilized external cavity diode laser to produce a radio-frequency beat used to actuate the carrier-envelope offset frequency of the Yb-fiber laser. The two-sample frequency deviation of the locked comb was 235 kHz for an averaging time of 50 seconds, and the comb remained locked for over 60 minutes with a root mean squared deviation of 236 kHz.

© 2014 Optical Society of America

OCIS Codes
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(320.7090) Ultrafast optics : Ultrafast lasers
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Ultrafast Optics

History
Original Manuscript: March 11, 2014
Revised Manuscript: April 2, 2014
Manuscript Accepted: April 4, 2014
Published: April 23, 2014

Citation
Thomas C. Schratwieser, Karolis Balskus, Richard A. McCracken, Carl Farrell, Christopher G. Leburn, Zhaowei Zhang, Tobias P. Lamour, Teresa I. Ferreiro, Alireza Marandi, Aidan S. Arnold, and Derryck T. Reid, "87Rb-stabilized 375-MHz Yb:fiber femtosecond frequency comb," Opt. Express 22, 10494-10499 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-9-10494


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Marra, H. S. Margolis, D. J. Richardson, “Dissemination of an optical frequency comb over fiber with 3 × 10-18 fractional accuracy,” Opt. Express 20(2), 1775–1782 (2012). [CrossRef] [PubMed]
  2. R. W. Fox, S. A. Diddams, A. Bartels, L. Hollberg, “Optical frequency measurements with the global positioning system: tests with an iodine-stabilized He-Ne laser,” Appl. Opt. 44(1), 113–120 (2005). [CrossRef] [PubMed]
  3. P. Pal, W. H. Knox, I. Hartl, M. E. Fermann, “Self referenced Yb-fiber-laser frequency comb using a dispersion micromanaged tapered holey fiber,” Opt. Express 15(19), 12161–12166 (2007). [CrossRef] [PubMed]
  4. P. Li, G. Wang, C. Li, A. Wang, Z. Zhang, F. Meng, S. Cao, Z. Fang, “Characterization of the carrier envelope offset frequency from a 490 MHz Yb-fiber-ring laser,” Opt. Express 20(14), 16017–16022 (2012). [CrossRef] [PubMed]
  5. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999). [CrossRef]
  6. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000). [CrossRef] [PubMed]
  7. C. Li, G. Wang, T. Jiang, A. Wang, Z. Zhang, “750 MHz fundamental repetition rate femtosecond Yb:fiber ring laser,” Opt. Lett. 38(3), 314–316 (2013). [CrossRef] [PubMed]
  8. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000). [CrossRef] [PubMed]
  9. W.-Y. Cheng, T.-H. Wu, S.-W. Huang, S.-Y. Lin, C.-M. Wu, “Stabilizing the frequency of femtosecond Ti:sapphire comb laser by a novel scheme,” Appl. Phys. B 92(1), 13–18 (2008). [CrossRef]
  10. A. Benedick, D. Tyurikov, M. Gubin, R. Shewmon, I. Chuang, F. X. Kärtner, “Compact, Ti:sapphire-based, methane-stabilized optical molecular frequency comb and clock,” Opt. Lett. 34(14), 2168–2170 (2009). [CrossRef] [PubMed]
  11. D. V. Sutyrin, N. Poli, N. Beverini, S. V. Chepurov, M. Prevedelli, M. Schioppo, F. Sorrentino, M. G. Tarallo, G. M. Tino, “Frequency noise performances of a Ti:sapphire optical frequency comb stabilized to an optical reference,” Opt. Commun. 291, 291–298 (2013). [CrossRef]
  12. D. Hou, B. Ning, J. Wu, Z. Wang, J. Zhao, “Demonstration of a stable erbium-fiber-laser-based frequency comb based on a single rubidium atomic resonator,” Appl. Phys. Lett. 102(15), 151104 (2013), doi:. [CrossRef]
  13. D. Hou, J. Wu, S. Zhang, Q. Ren, Z. Zhang, J. Zhao, “A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions,” Appl. Phys. Lett. 104(11), 111104 (2014), doi:. [CrossRef]
  14. C. Farrell, K. A. Serrels, T. R. Lundquist, P. Vedagarbha, D. T. Reid, “Octave-spanning super-continuum from a silica photonic crystal fiber pumped by a 386 MHz Yb:fiber laser,” Opt. Lett. 37(10), 1778–1780 (2012). [CrossRef] [PubMed]
  15. J. Ye, S. Swartz, P. Jungner, J. L. Hall, “Hyperfine structure and absolute frequency of the (87)Rb 5P(3/2) state,” Opt. Lett. 21(16), 1280–1282 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited