OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10535–10543

High-power mid-infrared frequency comb from a continuous-wave-pumped bulk optical parametric oscillator

Ville Ulvila, C. R. Phillips, Lauri Halonen, and Markku Vainio  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 10535-10543 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1080 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that it is possible to obtain a mid-infrared optical frequency comb (OFC) experimentally by using a continuous-wave-pumped optical parametric oscillator (OPO). The comb is generated without any active modulation. It is based on cascading quadratic nonlinearities that arise from intra-cavity phase mismatched second harmonic generation of the signal wave that resonates in the OPO. The generated OFC is transferred from the signal wavelength (near-infrared) to the idler wavelength (mid-infrared) by intracavity difference frequency generation between the OPO pump wave and the signal comb. We have produced a mid-infrared frequency comb which is tunable from 3.0 to 3.4 µm with an average output power of up to 3.1 W.

© 2014 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(190.5940) Nonlinear optics : Self-action effects
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

Original Manuscript: February 13, 2014
Revised Manuscript: April 17, 2014
Manuscript Accepted: April 17, 2014
Published: April 24, 2014

Ville Ulvila, C. R. Phillips, Lauri Halonen, and Markku Vainio, "High-power mid-infrared frequency comb from a continuous-wave-pumped bulk optical parametric oscillator," Opt. Express 22, 10535-10543 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000). [CrossRef] [PubMed]
  2. S. T. Cundiff, J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003). [CrossRef]
  3. T. Gherman, D. Romanini, “Modelocked cavity--enhanced absorption spectroscopy,” Opt. Express 10(19), 1033–1042 (2002). [CrossRef] [PubMed]
  4. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27(9), 766–768 (2002). [CrossRef] [PubMed]
  5. A. Schliesser, N. Picque, T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012). [CrossRef]
  6. R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, H. C. Liu, “Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities,” Science 290(5497), 1739–1742 (2000). [CrossRef] [PubMed]
  7. R. Paiella, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, H. C. Liu, “Monolithic active mode locking of quantum cascade lasers,” Appl. Phys. Lett. 77(2), 169–171 (2000). [CrossRef]
  8. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007). [CrossRef] [PubMed]
  9. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008). [CrossRef] [PubMed]
  10. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36(17), 3398–3400 (2011). [CrossRef] [PubMed]
  11. C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat Commun 4, 1345 (2013). [CrossRef] [PubMed]
  12. P. Maddaloni, P. Malara, G. Gagliardi, P. De Natale, “Mid-infrared fibre-based optical comb,” New J. Phys. 8(11), 262 (2006). [CrossRef]
  13. F. Keilmann, C. Gohle, R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004). [CrossRef] [PubMed]
  14. T. W. Neely, T. A. Johnson, S. A. Diddams, “High-power broadband laser source tunable from 3.0 μm to 4.4 μm based on a femtosecond Yb:fiber oscillator,” Opt. Lett. 36(20), 4020–4022 (2011). [CrossRef] [PubMed]
  15. I. Galli, F. Cappelli, P. Cancio, G. Giusfredi, D. Mazzotti, S. Bartalini, P. De Natale, “High-coherence mid-infrared frequency comb,” Opt. Express 21(23), 28877–28885 (2013). [CrossRef] [PubMed]
  16. J. H. Sun, B. J. S. Gale, D. T. Reid, “Composite frequency comb spanning 0.4-2.4 microm from a phase-controlled femtosecond Ti:sapphire laser and synchronously pumped optical parametric oscillator,” Opt. Lett. 32(11), 1414–1416 (2007). [CrossRef] [PubMed]
  17. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm,” Opt. Lett. 34(9), 1330–1332 (2009). [CrossRef] [PubMed]
  18. S. T. Wong, K. L. Vodopyanov, R. L. Byer, “Self-phase-locked divide-by-2 optical parametric oscillator as a broadband frequency comb source,” J. Opt. Soc. Am. B 27(5), 876–882 (2010). [CrossRef]
  19. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20(7), 7046–7053 (2012). [CrossRef] [PubMed]
  20. S. A. Diddams, L. S. Ma, J. Ye, J. L. Hall, “Broadband optical frequency comb generation with a phase-modulated parametric oscillator,” Opt. Lett. 24(23), 1747–1749 (1999). [CrossRef] [PubMed]
  21. N. Forget, S. Bahbah, C. Drag, F. Bretenaker, M. Lefèbvre, E. Rosencher, “Actively mode-locked optical parametric oscillator,” Opt. Lett. 31(7), 972–974 (2006). [CrossRef] [PubMed]
  22. J. Khurgin, J. M. Melkonian, A. Godard, M. Lefebvre, E. Rosencher, “Passive mode locking of optical parametric oscillators: an efficient technique for generating sub-picosecond pulses,” Opt. Express 16(7), 4804–4818 (2008). [CrossRef] [PubMed]
  23. V. Ulvila, C. R. Phillips, L. Halonen, M. Vainio, “Frequency comb generation by a continuous-wave-pumped optical parametric oscillator based on cascading quadratic nonlinearities,” Opt. Lett. 38(21), 4281–4284 (2013). [CrossRef] [PubMed]
  24. T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012). [CrossRef]
  25. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17(1), 28–30 (1992). [CrossRef] [PubMed]
  26. G. I. Stegeman, “χ(2) cascading: Nonlinear phase shifts,” Quantum Semicl. Opt. 9(2), 139–153 (1997). [CrossRef]
  27. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, J. Jiang, M. E. Fermann, I. Hartl, “Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system,” Opt. Lett. 36(19), 3912–3914 (2011). [CrossRef] [PubMed]
  28. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, I. Hartl, M. E. Fermann, “Supercontinuum generation in quasi-phasematched waveguides,” Opt. Express 19(20), 18754–18773 (2011). [CrossRef] [PubMed]
  29. G. Cerullo, S. De Silvestri, A. Monguzzi, D. Segala, V. Magni, “Self-starting mode locking of a Cw Nd:YAG laser using cascaded second-order nonlinearities,” Opt. Lett. 20(7), 746–748 (1995). [CrossRef] [PubMed]
  30. M. Zavelani-Rossi, G. Cerullo, V. Magni, “Mode locking by cascading of second-order nonlinearities,” IEEE J. Quantum Electron. 34(1), 61–70 (1998). [CrossRef]
  31. S. J. Holmgren, V. Pasiskevicius, F. Laurell, “Generation of 2.8 ps pulses by mode-locking a Nd:GdVO4 laser with defocusing cascaded Kerr lensing in periodically poled KTP,” Opt. Express 13(14), 5270–5278 (2005). [CrossRef] [PubMed]
  32. J. J. Zondy, F. A. Camargo, T. Zanon, V. Petrov, N. U. Wetter, “Observation of strong cascaded Kerr-lens dynamics in an optimally-coupled cw intracavity frequency-doubled Nd:YLF ring laser,” Opt. Express 18(5), 4796–4815 (2010). [CrossRef] [PubMed]
  33. M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, L. Halonen, “Singly resonant cw OPO with simple wavelength tuning,” Opt. Express 16(15), 11141–11146 (2008). [CrossRef] [PubMed]
  34. M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B-Lasers O. 94(3), 411–427 (2009). [CrossRef]
  35. M. Siltanen, M. Vainio, L. Halonen, “Pump-tunable continuous-wave singly resonant optical parametric oscillator from 2.5 to 4.4 microm,” Opt. Express 18(13), 14087–14092 (2010). [CrossRef] [PubMed]
  36. G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597 (1968).
  37. A. Hugi, G. Villares, S. Blaser, H. C. Liu, J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012). [CrossRef] [PubMed]
  38. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011). [CrossRef]
  39. K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21(1), 1335–1343 (2013). [CrossRef] [PubMed]
  40. C. R. Phillips, M. M. Fejer, “Stability of the singly resonant optical parametric oscillator,” J. Opt. Soc. Am. B 27(12), 2687–2699 (2010). [CrossRef]
  41. Z. Zhang, D. T. Reid, S. Chaitanya Kumar, M. Ebrahim-Zadeh, P. G. Schunemann, K. T. Zawilski, C. R. Howle, “Femtosecond-laser pumped CdSiP₂ optical parametric oscillator producing 100 MHz pulses centered at 6.2 μm,” Opt. Lett. 38(23), 5110–5113 (2013). [CrossRef] [PubMed]
  42. J.-B. Dherbecourt, A. Godard, M. Raybaut, J.-M. Melkonian, M. Lefebvre, “Picosecond synchronously pumped ZnGeP2 optical parametric oscillator,” Opt. Lett. 35(13), 2197–2199 (2010). [CrossRef] [PubMed]
  43. M. A. Watson, M. V. O’Connor, D. P. Shepherd, D. C. Hanna, “Synchronously pumped CdSe optical parametric oscillator in the 9-10 microm region,” Opt. Lett. 28(20), 1957–1959 (2003). [CrossRef] [PubMed]
  44. R. K. Feaver, R. D. Peterson, P. E. Powers, “Longwave-IR optical parametric oscillator in orientation-patterned GaAs pumped by a 2 µm Tm,Ho:YLF laser,” Opt. Express 21(13), 16104–16110 (2013). [CrossRef] [PubMed]
  45. C. R. Phillips, J. Jiang, C. Mohr, A. C. Lin, C. Langrock, M. Snure, D. Bliss, M. Zhu, I. Hartl, J. S. Harris, M. E. Fermann, M. M. Fejer, “Widely tunable midinfrared difference frequency generation in orientation-patterned GaAs pumped with a femtosecond Tm-fiber system,” Opt. Lett. 37(14), 2928–2930 (2012). [CrossRef] [PubMed]
  46. T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett. 106(14), 143903 (2011). [CrossRef] [PubMed]
  47. C. R. Phillips, J. S. Pelc, M. M. Fejer, “Continuous wave monolithic quasi-phase-matched optical parametric oscillator in periodically poled lithium niobate,” Opt. Lett. 36(15), 2973–2975 (2011). [CrossRef] [PubMed]
  48. M. Vainio, C. Ozanam, V. Ulvila, L. Halonen, “Tuning and stability of a singly resonant continuous-wave optical parametric oscillator close to degeneracy,” Opt. Express 19(23), 22515–22527 (2011). [CrossRef] [PubMed]
  49. M. Vainio, L. Halonen, “Stable operation of a cw optical parametric oscillator near the signal-idler degeneracy,” Opt. Lett. 36(4), 475–477 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited