OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10550–10558

Integrated silicon modulator based on microring array assisted MZI

Xiangdong Li, Xue Feng, Kaiyu Cui, Fang Liu, and Yidong Huang  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 10550-10558 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1680 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A silicon modulator with microring array assisted MZI is experimentally demonstrated on silicon-on-insulator wafer through CMOS-compatible process. The footprint of the whole modulator is about 600 μm2. With forward-biased current-driven p-n junction, the 3-dB modulation bandwidth is ~2GHz. Furthermore, the impact of ambient temperature is minified with the help of MZI. Within temperature range of 10 – 70 °C, the maximum divergence of modulation curve is less than ~3 dB.

© 2014 Optical Society of America

OCIS Codes
(120.6780) Instrumentation, measurement, and metrology : Temperature
(200.4650) Optics in computing : Optical interconnects
(130.4110) Integrated optics : Modulators
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Integrated Optics

Original Manuscript: February 17, 2014
Revised Manuscript: April 19, 2014
Manuscript Accepted: April 20, 2014
Published: April 24, 2014

Xiangdong Li, Xue Feng, Kaiyu Cui, Fang Liu, and Yidong Huang, "Integrated silicon modulator based on microring array assisted MZI," Opt. Express 22, 10550-10558 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010). [CrossRef]
  2. D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009). [CrossRef]
  3. Q. F. Xu, S. Manipatruni, B. Schmidt, J. Shakya, M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007). [CrossRef] [PubMed]
  4. L. Chen, K. Preston, S. Manipatruni, M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express 17(17), 15248–15256 (2009). [CrossRef] [PubMed]
  5. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19(22), 21989–22003 (2011). [CrossRef] [PubMed]
  6. D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012). [CrossRef]
  7. P. Dong, L. Chen, Y. K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20(6), 6163–6169 (2012). [CrossRef] [PubMed]
  8. T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010). [CrossRef]
  9. H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, T. Baba, “10 Gb/s operation of photonic crystal silicon optical modulators,” Opt. Express 19(14), 13000–13007 (2011). [CrossRef] [PubMed]
  10. A. M. Gutierrez, A. Brimont, G. Rasigade, M. Ziebell, D. Marris-Morini, J. M. Fédéli, L. Vivien, J. Marti, P. Sanchis, “Ring-assisted Mach–Zehnder interferometer silicon modulator for enhanced performance,” J. Lightwave Technol. 30(1), 9–14 (2012). [CrossRef]
  11. X. J. Zhang, X. Feng, D. K. Zhang, Y. D. Huang, “Compact temperature-insensitive modulator based on a silicon microring assistant Mach Zehnder interferometer,” Chin. Phys. B 21, 124203 (2012).
  12. F. Shinobu, N. Ishikura, Y. Arita, T. Tamanuki, T. Baba, “Continuously tunable slow-light device consisting of heater-controlled silicon microring array,” Opt. Express 19(14), 13557–13564 (2011). [CrossRef] [PubMed]
  13. S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, T. Yamamoto, “1-Vpp 10-Gb/s operation of slow-light silicon Mach-Zehnder modulator in wavelength range of 1 nm,” in IEEE International Conference on Group IV Photonics, (Beijing, China, 2010), pp. 45–47. [CrossRef]
  14. Y. Li, L. Zhang, M. Song, B. Zhang, J. Y. Yang, R. G. Beausoleil, A. E. Willner, P. D. Dapkus, “Coupled-ring-resonator-based silicon modulator for enhanced performance,” Opt. Express 16(17), 13342–13348 (2008). [CrossRef] [PubMed]
  15. L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, A. E. Willner, “Embedded ring resonators for microphotonic applications,” Opt. Lett. 33(17), 1978–1980 (2008). [CrossRef] [PubMed]
  16. Q. Xu, “Silicon dual-ring modulator,” Opt. Express 17(23), 20783–20793 (2009). [CrossRef] [PubMed]
  17. Y. Hu, X. Xiao, H. Xu, X. Li, K. Xiong, Z. Li, T. Chu, Y. Yu, J. Yu, “High-speed silicon modulator based on cascaded microring resonators,” Opt. Express 20(14), 15079–15085 (2012). [CrossRef] [PubMed]
  18. J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004). [CrossRef]
  19. L. Zhang, Y. C. Li, J. Y. Yang, M. P. Song, R. G. Beausoleil, A. E. Willner, “Silicon-based microring resonator modulators for intensity modulation,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited